University College London, 2019-2020
Econ 0107 - Macroeconomics I - Ralph Luetticke \& Franck Portier

Midterm Exam

This is a 2 hours exam. No documents allowed. 100 points in total, 25 points for each problem.

I - The Welfare Cost of Business Cycles

Let utility be given by:

$$
E_{-1} \sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right)
$$

where instantaneous utility takes this specification $u\left(c_{t}\right)=\log \left(c_{t}\right)$. The consumption process is

$$
c_{t}=c_{t-1}^{\alpha} \epsilon_{t} \exp (\mu)
$$

where $\mu=-\frac{\sigma_{\epsilon}^{2}(1-\alpha)}{2\left(1-\alpha^{2}\right)}$ and $\log \epsilon_{t} \sim i i d-N\left(0, \sigma_{\epsilon}^{2}\right)$. So that the logarithm of consumption follows an $\operatorname{AR}(1)$ with parameter α :

$$
\log c_{t}=\mu+\alpha \log c_{t-1}+\log \epsilon_{t}
$$

$\mathbf{1}$ - In the long run, $\log c_{t}$ converges (in distribution) to $N\left(\frac{\mu}{1-\alpha}, \frac{\sigma_{\epsilon}^{2}}{1-\alpha^{2}}\right)$, which we call the invariant distribution. Show that the normalization proposed is such that the mean consumption is equal to one.
Hint: Let Z be a standard normal variable, and let μ_{Z} and $\sigma_{Z}>0$ be two real numbers. Then, the distribution of the random variable $X=e^{\mu_{Z}+\sigma_{Z} Z}$ is called the log-normal distribution with parameters μ_{Z} and σ_{Z}. The mean of a lognormal distribution is given by $\exp \left(\mu_{Z}+\sigma_{Z}^{2} / 2\right)$.

Using the definition of the mean of lognormal and plugging in for μ yields

$$
E(c)=E[\exp (\log c)]=\exp \left(\frac{\mu}{1-\alpha}+\frac{\sigma_{\epsilon}^{2}}{2\left(1-\alpha^{2}\right)}\right)=1
$$

2 - Assuming that consumption at time $0\left(c_{0}\right)$ is known, find the value function

$$
V\left(\lambda, \sigma_{\epsilon}^{2}\right)=E_{0} \sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}(1+\lambda)\right)
$$

where λ is a positive constant.
Hint: You can write the problem recursively as:

$$
V\left(c ; \lambda, \sigma_{\epsilon}^{2}\right)=u(c(1+\lambda))+\beta E V\left(c^{\prime} ; \lambda, \sigma_{\epsilon}^{2}\right)
$$

and use a guess-and-verify approach: $V\left(c ; \lambda, \sigma_{\epsilon}^{2}\right)=A \log c+B$
Using the guess one can write:

$$
\begin{gathered}
A \log c+B=\log [c(1+\lambda)]+\beta E\left(A \log \left[c^{\alpha} \epsilon \exp (\mu)\right]+B\right. \\
A \log c+B=\log c+\log (1+\lambda)+\beta A \alpha \log c+\beta A E \log \epsilon+\beta A \mu+\beta B
\end{gathered}
$$

where $E \log \epsilon=0$ so that matching coefficients yields

$$
\begin{gathered}
A=\frac{1}{(1-\alpha \beta)} \\
B=\frac{\log (1+\lambda)}{(1-\beta)}+\frac{\beta \mu}{(1-\beta)(1-\alpha \beta)}
\end{gathered}
$$

so that we have

$$
V\left(c ; \lambda, \sigma_{\epsilon}^{2}\right)=\frac{\log c}{(1-\alpha \beta)}+\frac{1}{(1-\beta)} \log (1+\lambda)+\frac{\beta \mu}{(1-\beta)(1-\alpha \beta)}
$$

3 - Compute the value of λ as a function of $\alpha, \sigma_{\epsilon}^{2}$ and γ such that

$$
V\left(c ; \lambda, \sigma_{\epsilon}^{2}\right)=V(c ; 0,0)
$$

What does λ represent? Determine how λ depends on $\alpha, \sigma_{\epsilon}^{2}$ and γ and interpret you results. Compare to the i.i.d. case, i.e. $\alpha=0$. Hint: try to use $\log (1+x) \approx x$.

Setting $V\left(c ; \lambda, \sigma_{\epsilon}^{2}\right)=V(c ; 0,0)$, we are looking for λ such that

$$
\log (1+\lambda)=-\frac{\beta \mu}{(1-\alpha \beta)}
$$

Plugging in for μ

$$
\log (1+\lambda)=\frac{\beta(1-\alpha) \sigma_{\epsilon}^{2}}{2\left(1-\alpha^{2}\right)(1-\alpha \beta)}
$$

or

$$
\lambda \approx \frac{\beta \sigma_{\epsilon}^{2}}{2(1+\alpha)(1-\alpha \beta)}
$$

When $\alpha=0$ we have that

$$
\lambda \approx \frac{\beta \sigma_{\epsilon}^{2}}{2}
$$

4 - What happens when $\alpha \rightarrow 1$? Is it sensible to think at λ as the "welfare cost of business cycles"?
Setting $V\left(c ; \lambda, \sigma_{\epsilon}^{2}\right)=V(c ; 0,0)$, we are looking for λ such that

$$
\log (1+\lambda)=-\frac{\beta \mu}{(1-\alpha \beta)}
$$

Plugging in for μ

$$
\log (1+\lambda)=\frac{\beta(1-\alpha) \sigma_{\epsilon}^{2}}{2\left(1-\alpha^{2}\right)(1-\alpha \beta)}
$$

or

$$
\lambda \approx \frac{\beta \sigma_{\epsilon}^{2}}{2(1+\alpha)(1-\alpha \beta)}
$$

When $\alpha=0$ we have that

$$
\lambda \approx \frac{\beta \sigma_{\epsilon}^{2}}{2}
$$

II - McCall Model

Consider a worker who draws every period a job offer to work forever at wage w. Successive offers are independently and identically distributed drawings from a distribution $F_{i}(w), i=1,2$. Assume that F_{1} has been obtained from F_{2} by a mean-preserving spread. The worker's objective is to maximize

$$
E \sum_{t=0}^{T} \beta^{t} y_{t}, \quad 0<\beta<1
$$

where $y_{t}=w$ if the worker has accepted employment at wage w and is zero otherwise. Assume that both distributions, F_{1} and F_{2}, share a common upper bound, B.

1 - Write down the Bellman equation at time t. Argue that the optimal policy is of the reservation wage form.

$$
v_{t}^{i}=\max \left\{w \frac{1-\beta^{T-t+1}}{1-\beta}, \beta \int_{0}^{B} v_{t+1}^{i}\left(w^{\prime}\right) d F_{i}\left(w^{\prime}\right)\right\}
$$

where $w \frac{1-\beta^{T-t+1}}{1-\beta}$ is the value of working at wage w in periods $t, t+1, \ldots, T$, The first term is increasing in w while the second one is constant. It follows that, at time t, the optimal policy is of the reservation wage form.
$\mathbf{2}$ - Show that the reservation wages of workers drawing from F_{1} and F_{2} coincide at $t=T$ and $t=T-1$.

$$
v_{T}^{i}=\max \{0, w\}=w
$$

Therefore,

$$
\int_{0}^{B} v_{T}^{i}(w) d F_{i}(w)=\int_{0}^{B} w d F_{i}(w)=E w, \quad i=1,2
$$

The reservation wage at time T is zero: the worker accepts every offer. At time $(T-1)$, Bellman equation reads

$$
v_{T-1}^{i}=\max \left\{w(1+\beta), \beta \int_{0}^{B} v_{T}^{i}\left(w^{\prime}\right) d F_{i}\left(w^{\prime}\right)\right\}=\max \{w(1+\beta), \beta E w\}
$$

It is then clear that the worker will accept the offer if $w(1+\beta) \geq \beta E w$ and will reject it otherwise. Therefore the reservation wage w_{T-1} is $\beta E w /(1+\beta)$. Because the expectation of w is the same no matter whether w is drawn from F_{1} or F_{2}, it follows that both types of workers have the same reservation wage.

3 - Now introduce unemployment compensation: the worker who is unemployed collects c dollars. Show that the result in 2 - no longer holds, that is, the reservation wage of the workers that sample from F_{1} is higher than the one corresponding to workers that sample from F_{2} for $t=T-1$.

The problem at time T now reads

$$
v_{T}^{i}=\max \{c, w\}
$$

Then, $\bar{w}_{1}=\bar{w}_{2}=c$. However,

$$
\int_{0}^{B} \max \{w, c\} d F_{1}(w) \geq \int_{0}^{B} \max \{w, c\} d F_{2}(w)
$$

or $E v_{T}^{1} \geq E v_{T}^{2}$. Hence, $\bar{w}_{T-1}^{1} \geq \bar{w}_{T-1}^{2}$ as the reservation wage is equal to $\beta /(1+\beta) E v_{T}^{i}$

III - Fiscal Policies in a Dynamic Economy

Consider the following setup. There is no uncertainty, and decision makers have perfect foresight. A representative household has preferences over nonnegative streams of a single consumption good $c_{t} t$ that are ordered by

$$
\left.\sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right), \quad \beta \in\right] 0,1[
$$

where u is strictly increasing in c_{t}, twice continuously differentiable, and strictly concave. The households supplies inelastically one unit of labor.

The technology is

$$
\begin{aligned}
g_{t}+c_{t}+x_{t} & \leq F\left(k_{t}, n_{t}\right) \\
k_{t+1} & =(1-\delta) k_{t}+x_{t}
\end{aligned}
$$

where $\delta \in] 0,1\left[\right.$ is a depreciation rate, k_{t} is the stock of physical capital, x_{t} is gross investment, and $F(k, n)$ is a linearly homogeneous production function with positive and decreasing marginal products of capital and labor. We have the notation $F(k, 1)=f(k) . g$ stands for government expenditure.

There is a competitive equilibrium with all trades occurring at time 0 . The household owns capital, makes investment decisions, and rents capital and labor to a representative production firm. The representative firm uses
capital and labor to produce goods with the production function $F\left(k_{t}, n_{t}\right)$. A price system is a triple of sequences $\left\{q_{t}, r_{t}, w_{t}\right\}_{t=0}^{\infty}$ where q_{t} is the time 0 pretax price of one unit of investment or consumption at time $t\left(x_{t}\right.$ or $\left.c_{t}\right), r_{t}$ is the pretax price at time 0 that the household receives from the firm for renting capital at time t, and w_{t} is the pretax price at time 0 that the household receives for renting labor to the firm at time t.

The household faces the budget constraint:

$$
\sum_{t=0}^{\infty}\left(q_{t}\left(1+\tau_{c t}\right) c_{t}+\left(1-\tau_{i t}\right) q_{t}\left[k_{t+1}-(1-\delta) k_{t}\right]\right) \leq \sum_{t=0}^{\infty}\left(r_{t}\left(1-\tau_{k t}\right) k_{t}+w_{t}\left(1-\tau_{n t}\right) n_{t}-q_{t} \tau_{h t}\right)
$$

where $\tau_{c t}$ is the consumption tax rate, $\tau_{i t}$ the investment credit rate, $\tau_{k t}$ the capital earning tax rate, $\tau_{n t}$ the labor earning tax rate and $\tau_{h t}$ a lump-sum tax.
1 - Write the government budget constraint.

$$
\sum_{t=0}^{\infty} q_{t}\left(g_{t}+\tau_{i t}\left(k_{t+1}-(1-\delta) k_{t}\right)\right) \leq \sum_{t=0}^{\infty}\left(q_{t} \tau_{c t} c_{t}+\tau_{k t} r_{t} k_{t}+\tau_{n t} w_{t} n_{t}+q_{t} \tau_{h t}\right)
$$

$\mathbf{2}$ - Define a competitive equilibrium.
A competitive equilibrium is a budget feasible policy, a feasible allocation and a price system such that, given price system and government policy, (i) the allocation solves the household problem and (ii) the allocation solves the firm problem.
3 - Use the household budget constraint to derive a no-arbitrage condition, from which you will get a formula for the user cost of capital. Comment.

The household budget constraint writes:

$$
\begin{aligned}
\sum_{t=0}^{\infty} q_{t}\left(1+\tau_{c t}\right) c_{t} & \leq \sum_{t=0}^{\infty} w_{t}\left(1-\tau_{n t}\right) n_{t}-\sum_{t=0}^{\infty} q_{t} \tau_{h t} \\
& +\sum_{t=0}^{\infty}\left(r_{t}\left(1-\tau_{k t}\right)+q_{t}\left(1-\tau_{i t}\right)(1-\delta) k_{t}-q_{t-1}\left(1-\tau_{i t-1}\right)\right) k_{t} \\
& -\lim _{T \rightarrow \infty}\left(1-\tau_{i T}\right) q_{T} k_{T+1}
\end{aligned}
$$

By arbitrage,

$$
\begin{equation*}
q_{t}\left(1-\tau_{i t}\right)=q_{t+1}\left(1-\tau_{i t+1}\right)(1-\delta)+r_{t+1}\left(1-\tau_{i t+1}\right) \tag{a}
\end{equation*}
$$

If (a) does not hold for some t, then the household could obtain an infinite wealth by choosing k_{t} going to + or $-\infty$. She would then consume plus infinity, which cannot be an equilibrium with finite endowments.
4 - Write down the household maximization problem and derive first order conditions.
$\mathbf{5}$ - Write down the firm maximization problem and derive first order conditions.

6 - Show that the equilibrium can be characterized by a second order nonlinear difference equation in k_{t}.

7 - Derive a formula for the steady state level of capital.

8 - Which taxes are distortionary at the steady state?

IV - Overlapping genearations

Consider an economy consisting of overlapping generations of two-period-lived agents. There is a constant population of N young agents born at each date $t \geq 1$. There is a single consumption good that is not storable. Each
agent born in $t \geq 1$ is endowed with w_{1} units of the consumption good when young and with w_{2} units when old, where $0<w_{2}<w_{1}$. Each agent born at $\mathrm{t} \geq 1$ has identical preferences $\ln c_{t}^{h}(t)+\ln c_{t}^{h}(t+1)$, where $c_{t}^{h}(s)$ is time s consumption of agent h born at time t. In addition, at time 1 , there are alive N old people who are endowed with $H(0)$ units of unbacked paper currency and who want to maximize their consumption of the time 1 good.

A government attempts to finance a constant level of government purchases $G(t)=G \geq 0$ for $t \geq 1$ by printing new base money. The government's budget constraint is

$$
G=(H(t)-H(t-1)) / p(t),
$$

where $p(t)$ is the price level at t, and $H(t)$ is the stock of currency carried over from t to $(t+1)$ by agents born in t. Let $g=G / N$ be government purchases per young person. Assume that purchases $G(t)$ yield no utility to private agents.

1 - Denote $s_{t}^{h}(t)$ the savings of young agent h, and let $r(t)$ be the rate of return of savings between t and $(t+1)$. Write down the maximization problem of agent h, and derive. saving function $f^{h}(1+r(t))$.

2 - Let's assume that savings can be done using currency or by issuing/subscribing privately issued bonds. Explain why the following equation holds in equilibrium when fiat currency (money) is valued:

$$
1+r(t)=\frac{p(t)}{p(t+1)}
$$

3 - Define a competitive equilibrium with valued fiat currency.

4 - Find a stationary equilibrium with valued fiat currency.

5 - Prove that for small enough g, there exist two stationary equilibria with valued fiat currency. (You can do that graphically by using the function f to draw seigniorage revenues as a function of $(1+r)$).

Solution to Econ 0107 ひKAn. FIRsT TERN

Proldem III. Fiscal policies w A Dawatuc Econony

1. Gur $B C: \sum_{t=0}^{\infty} q_{r}\left(g_{r}+\varepsilon_{r} q_{r}\left(k_{t c i}(t-\delta) k_{r}\right)\right) \leq \sum_{t=0}^{\infty}\left(q_{r} \tau_{c_{r}} c_{r}+\tau_{t} \tau_{r} k_{t}+\tau_{n_{r}} w_{r} n_{r}+q_{r} \tau_{h_{r}}\right)$
2. Competitive equblebrum: a hudget feasible polyy

- a feasble allocatior
- a puce system
suok thes, gwen puce system and gut. poleny,
* He cllocatin sorns the houschol' pb
a finm -

3- The houstold budget cmotnawrt muts

$$
\begin{aligned}
\sum_{t=0}^{\infty} q_{t}\left(l+\tau_{c_{r}}\right) q_{r} \leqslant & \sum_{r_{1}=0}^{\infty}\left(1-\tau_{n r}\right) w_{r} n_{l}-\sum_{k_{0}}^{\infty} q_{r} \tau_{h_{r}}+\left(n_{0}\left(1-\tau_{k_{0}}\right)+\left(1-\tau_{i 0}\right) q_{0}(1-\delta)\right) k_{0} \\
& +\sum_{r=1}^{\infty}\left(\tau_{r}\left(1-\tau_{n_{r}}\right)+q_{r}\left(1-\tau_{i r}\right)(1-\delta)-q_{t-1}\left(1-\tau_{i-1}\right)\right) k_{r}-\lim _{T \rightarrow \infty}\left(1-\tau_{i \pi}\right) q_{T} k_{T+1}
\end{aligned}
$$

By arbitrage $q_{t}\left(1-\tau_{i f}\right)=q_{t+1}\left(1-c_{i t-1}\right)(1-\delta)+v_{t-1}\left(1-c_{n_{t=1}}\right)$ (a)
(if not, choosing $h_{q} \rightarrow \pm \infty$ mould allow to case $+\infty$)
user cost of capital $\tau_{z_{x 1}}=\left(\frac{1}{1-\tau_{n t c_{1}}}\right)\left(q_{t}\left(1-\tau_{i r}\right)-q_{t-t_{1}}\left(1-\tau_{i t-1}\right)+\delta q_{t-1}\left(1-\tau_{i t \tau_{1}}\right)\right)$
Te user cost of capital takes in to account He nate of laxation of capital earnings, The capital gain on loss from t to $t+1$ and the muvestment-aedit-adjushed deprecation coot,

Fol $\quad \rho^{\prime} \mu_{t}^{\prime}=\mu q_{t}\left(1+\tau_{c r}\right)$ (b)
5- Finm Max $F\left(k_{r, \mu_{r}}\right)-m_{t}-n_{r}-\mu_{r} k_{r}$

$$
\left\{m_{1}, k_{n}\right\}
$$

Foc: $r_{r}=q_{r} F_{r_{r}}=q_{r} f^{\prime}\left(r_{r}\right)$ (c)

$$
w_{t}=q r F_{n t}
$$

6-
take (a), uplace q by Dte expuonn in (b) and nket by the expessoion in (c) + use $\begin{aligned} q=f\left(k_{r}\right) & -k_{t+i} \\ & +\left(-(-) k_{r}\right.\end{aligned}$

7- Al th steady slate, $\quad 1=\beta\left(1-\delta+\left(\frac{1-\tau_{k}}{\left.1-\tau_{i}\right)} f^{\prime}(k)\right)\right.$
 τ_{i}, τ_{k} are destontimay

Probler IV: Overlapping Generations
1- max $\ln c^{h}(t)+\ln c_{1}^{h}(t+1)+\lambda\left(w_{1}+(1+\tau(t))^{-1} w_{2}-c_{1}^{h}(t)-(1+c(t))^{-1} c_{1}^{h}(1+n)\right)$

$$
\text { For: } \begin{aligned}
& 1 / c_{r}^{h}(t)=\lambda, \quad 1 / c_{r}^{f}(t+1)=\left((12(t))^{-1} \lambda\right. \\
&\left.\left.\Rightarrow c_{r}^{f}(t)=c_{r}^{h}(t+1)\right) /(1+c(1))\right)
\end{aligned}
$$

plug in the $B C: w_{1}+(1+2(t))^{-1} \omega_{2}=2 c_{k}^{h}(r) \Rightarrow s_{r}^{h}=w_{1}-c c_{1}^{h}(r)=\frac{1}{2}\left(w_{1}-\frac{w_{2}}{12+2 t r)}\right)$

$$
=f^{2}(t+2(t))
$$

Remark: $f^{h}\left(\mid t_{2}(r)=f\left(1 t_{2}(r)\right)\right.$ [does not depend on h]
2- $p(t) / p(t-1)$ is the return on money $\operatorname{tec}(r)$ is the return on bands
No uncutannt \rightarrow by arbitrage, all assists that are postlireb valued have th save return

$$
\Rightarrow p(t) / p(t+1)=1+2(t) \text {. }
$$

3-. All agents behave the sene \Rightarrow sop the h index.
 suchtrat

4- Reel vamadlas will be custant, nominal aves will grow.
Usung the equations definng the equblibum;
(c) $\Rightarrow f(1+2)=\frac{H(r)}{N p(r)} \Rightarrow \frac{H(r)}{P(t)}$ is costant
$(b) \Rightarrow g=\underbrace{\frac{M(r)}{N p(r)}}_{f(1+2)}-\underbrace{\frac{p(t-1)}{p(t)}}_{(1+2)}, \underbrace{N(t-1)}_{f(1+2)}$
$N p(t-1)$
\Rightarrow eq. is faird by solng the equatm $g=f\left(1+r_{2}\right)-(1+2) f(1+r)$

$$
\text { on } g=h(2)
$$

$u_{2} t h \quad h(2)=-\frac{r}{2}\left(w_{1}-\frac{w_{2}}{1+2}\right)$
5. clech that $h(0)=h\left(\frac{w_{2}}{w_{1}}-1\right)=0 \quad, \frac{w_{2}}{w_{1}}-1<0$

$$
\begin{aligned}
& \left.h^{\prime}(2)=-\frac{1}{2}\left(w_{1}-\frac{w_{2}}{1+2}\right)+2 \frac{w_{2}}{(1+2)^{2}}\right) \\
& h^{\prime}(0)<0, \quad h^{\prime}\left(\frac{w_{2}}{w_{2}}-1\right)>0
\end{aligned}
$$

