University College London, 2019-2020
Econ 0107 - Macroeconomics I - Ralph Luetticke \& Franck Portier

Midterm Exam

This is a 2 hours exam. No documents allowed. 100 points in total, 25 points for each problem.

I - The Welfare Cost of Business Cycles

Let utility be given by:

$$
E_{-1} \sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right)
$$

where instantaneous utility takes this specification $u\left(c_{t}\right)=\log \left(c_{t}\right)$.
The consumption process is

$$
c_{t}=c_{t-1}^{\alpha} \epsilon_{t} \exp (\mu)
$$

where $\mu=-\frac{\sigma_{\epsilon}^{2}(1-\alpha)}{2\left(1-\alpha^{2}\right)}$ and $\log \epsilon_{t} \sim$ iid $-N\left(0, \sigma_{\epsilon}^{2}\right)$. So that the logarithm of consumption follows an AR (1) with parameter α :

$$
\log c_{t}=\mu+\alpha \log c_{t-1}+\log \epsilon_{t}
$$

1 - In the long run, $\log c_{t}$ converges (in distribution) to $N\left(\frac{\mu}{1-\alpha}, \frac{\sigma_{\epsilon}^{2}}{1-\alpha^{2}}\right)$, which we call the invariant distribution. Show that the normalization proposed is such that the mean consumption is equal to one.
Hint: Let Z be a standard normal variable, and let μ_{Z} and $\sigma_{Z}>0$ be two real numbers. Then, the distribution of the random variable $X=e^{\mu_{Z}+\sigma_{Z} Z}$ is called the log-normal distribution with parameters μ_{Z} and σ_{Z}. The mean of a lognormal distribution is given by $\exp \left(\mu_{Z}+\sigma_{Z}^{2} / 2\right)$.
2 - Assuming that consumption at time $0\left(c_{0}\right)$ is known, find the value function

$$
V\left(\lambda, \sigma_{\epsilon}^{2}\right)=E_{0} \sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}(1+\lambda)\right),
$$

where λ is a positive constant.
Hint: You can write the problem recursively as:

$$
V\left(c ; \lambda, \sigma_{\epsilon}^{2}\right)=u(c(1+\lambda))+\beta E V\left(c^{\prime} ; \lambda, \sigma_{\epsilon}^{2}\right)
$$

and use a guess-and-verify approach: $V\left(c ; \lambda, \sigma_{\epsilon}^{2}\right)=A \log c+B$

3 - Compute the value of λ as a function of $\alpha, \sigma_{\epsilon}^{2}$ and γ such that

$$
V\left(c ; \lambda, \sigma_{\epsilon}^{2}\right)=V(c ; 0,0)
$$

What does λ represent? Determine how λ depends on $\alpha, \sigma_{\epsilon}^{2}$ and γ and interpret you results. Compare to the i.i.d. case, i.e. $\alpha=0$.

Hint: try to use $\log (1+x) \approx x$.
4 - What happens when $\alpha \rightarrow 1$? Is it sensible to think at λ as the "welfare cost of business cycles"?
II - McCall Model

Consider a worker who draws every period a job offer to work forever at wage $w>0$. Successive offers are independently and identically distributed drawings from a distribution $F_{i}(w), i=1,2$. Assume that F_{1} has been obtained from F_{2} by a mean-preserving spread. The worker's objective is to maximize

$$
E \sum_{t=0}^{T} \beta^{t} y_{t}, \quad 0<\beta<1,
$$

where $y_{t}=w$ if the worker has accepted employment at wage w and is zero otherwise. Assume that both distributions, F_{1} and F_{2}, share a common upper bound, B.
1 - Write down the Bellman equation at time t. Argue that the optimal policy is of the reservation wage form.
2 - Show that the reservation wages of workers drawing from F_{1} and F_{2} coincide at $t=T$ and $t=T-1$.
3 - Now introduce unemployment compensation: the worker who is unemployed collects c dollars. Show that the result in $\mathbf{2}$ - no longer holds, that is, the reservation wage of the workers that sample from F_{1} is higher than the one corresponding to workers that sample from F_{2} for $t=T-1$.

III - Fiscal Policies in a Dynamic Economy

Consider the following setup. There is no uncertainty, and decision makers have perfect foresight. A representative household has preferences over nonnegative streams of a single consumption good c_{t} that are ordered by

$$
\left.\sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right), \quad \beta \in\right] 0,1[
$$

where u is strictly increasing in c_{t}, twice continuously differentiable, and strictly concave. The households supplies inelastically one unit of labor.

The technology is

$$
\begin{aligned}
g_{t}+c_{t}+x_{t} & \leq F\left(k_{t}, n_{t}\right) \\
k_{t+1} & =(1-\delta) k_{t}+x_{t}
\end{aligned}
$$

where $\delta \in] 0,1\left[\right.$ is a depreciation rate, k_{t} is the stock of physical capital, x_{t} is gross investment, and $F(k, n)$ is a linearly homogeneous production function with positive and decreasing marginal products of capital and labor. We have the notation $F(k, 1)=f(k) . g$ stands for government expenditure.

There is a competitive equilibrium with all trades occurring at time 0 . The household owns capital, makes investment decisions, and rents capital and labor to a representative production firm. The representative firm uses capital and labor to produce goods with the production function $F\left(k_{t}, n_{t}\right)$. A price system is a triple of sequences $\left\{q_{t}, r_{t}, w_{t}\right\}_{t=0}^{\infty}$ where q_{t} is the time 0 pretax price of one unit of investment or consumption at time $t\left(x_{t}\right.$ or $\left.c_{t}\right)$, r_{t} is the pretax price at time 0 that the household receives from the firm for renting capital at time t, and w_{t} is the pretax price at time 0 that the household receives for renting labor to the firm at time t.

The household faces the budget constraint:

$$
\sum_{t=0}^{\infty}\left(q_{t}\left(1+\tau_{c t}\right) c_{t}+\left(1-\tau_{i t}\right) q_{t}\left[k_{t+1}-(1-\delta) k_{t}\right]\right) \leq \sum_{t=0}^{\infty}\left(r_{t}\left(1-\tau_{k t}\right) k_{t}+w_{t}\left(1-\tau_{n t}\right) n_{t}-q_{t} \tau_{h t}\right)
$$

where $\tau_{c t}$ is the consumption tax rate, $\tau_{i t}$ the investment credit rate, $\tau_{k t}$ the capital earning tax rate, $\tau_{n t}$ the labor earning tax rate and $\tau_{h t}$ a lump-sum tax.

1 - Write the government budget constraint.
2 - Define a competitive equilibrium.
3 - Use the household budget constraint to derive a no-arbitrage condition, from which you will get a formula for the user cost of capital. Comment.

4 - Write down the household maximization problem and derive first order conditions.
5 - Write down the firm maximization problem and derive first order conditions.
6 - Show that the equilibrium can be characterized by a second order nonlinear difference equation in k_{t}.
7 - Derive a formula for the steady state level of capital.
8 - Which taxes are distortionary at the steady state?

IV - Overlapping genearations

Consider an economy consisting of overlapping generations of two-period-lived agents. There is a constant population of N young agents born at each date $t \geq 1$. There is a single consumption good that is not storable. Each agent born in $t \geq 1$ is endowed with w_{1} units of the consumption good when young and with w_{2} units when old, where $0<w_{2}<w_{1}$. Each agent born at $\mathrm{t} \geq 1$ has identical preferences $\ln c_{t}^{h}(t)+\ln c_{t}^{h}(t+1)$, where $c_{t}^{h}(s)$ is time s consumption of agent h born at time t. In addition, at time 1 , there are alive N old people who are endowed with $H(0)$ units of unbacked paper currency and who want to maximize their consumption of the time 1 good.

A government attempts to finance a constant level of government purchases $G(t)=G \geq 0$ for $t \geq 1$ by printing new base money. The government's budget constraint is

$$
G=(H(t)-H(t-1)) / p(t),
$$

where $p(t)$ is the price level at t, and $H(t)$ is the stock of currency carried over from t to $(t+1)$ by agents born in t. Let $g=G / N$ be government purchases per young person. Assume that purchases $G(t)$ yield no utility to private agents.
1 - Denote by $s_{t}^{h}(t)$ the savings of young agent h, and let $r(t)$ be the rate of return on savings between t and $(t+1)$. Write down the maximization problem of agent h, and derive saving function $f^{h}(1+r(t))$.

2 - Let's assume that savings can be done using currency or by issuing/subscribing privately issued bonds. Explain why the following equation holds in equilibrium when fiat currency (money) is valued:

$$
1+r(t)=\frac{p(t)}{p(t+1)}
$$

3 - Define a competitive equilibrium with valued fiat currency.
4 - Find a stationary equilibrium with valued fiat currency.
5 - Prove that for small enough g, there exist two stationary equilibria with valued fiat currency. (You can do that graphically by using the function f to draw seigniorage revenues as a function of $(1+r)$).

