University College London, 2020-2021
Econ 0107 - Macroeconomics I - Ralph Luetticke \& Franck Portier

Midterm Coursework Assessment

Each part carries 25\% of the total mark
By submitting this assessment, I pledge my honour that I have not violated UCL's Assessment Regulations which are detailed in the UCL academic manual (chapter 6 , section 9 on student academic misconduct procedure), which include (but are not limited to) plagiarism, self-plagiarism, unauthorised collaboration between students, sharing my assessment with another student or third party, access another student's assessment, falsification, contract cheating, and falsification of extenuating circumstances.

I - The End of the World in an OLG Model

This problem explores the consequences of the world having an end (possibly stochastically) in an OLG model. Notations will be, as much as possible, those of the course. Agents are indexed by $i=0,1, \ldots,+\infty$, where i is the period of birth. The economy starts in period 1. Each generation lives for two periods, and preferences are

$$
U^{i}\left(c^{i}\right)=\log \left(c_{i}^{i}\right)+\log \left(c_{i+1}^{i}\right)
$$

Utility is $U^{0}\left(c^{0}\right)=\log \left(c_{1}^{0}\right)$ for the old of period 0 and $\log \left(c_{i}^{i}\right)$ for the young in the last period of the world. Endowments are $\left(y_{i}^{i}, y_{i+1}^{i}\right)=(1-\varepsilon, \varepsilon)$ and $y_{t}^{i}=0$ if $t \neq i, i+1$, with $\left.\varepsilon \in\right] 0,1 / 2[$.

The part that is different from the course is that, in every period i, Nature is flipping a coin and the world will end at the end of the next period $(i+1)$ with probability π_{i} and will survive the end of the next period with probability $1-\pi_{i}$.

In period i, the economy can be in three different states:

- $s_{i}=E$ if the world is ending at the end of $i+1$;
- $s_{i}=\bar{E}$ if the world does not end at the end of $i+1$;
- $s_{i}=\varnothing$ if period i is the last period of the world (meaning that $s_{i-1}=E$).

We always assume that $\pi_{1}=0$.

Assume first that $\pi_{1}=0$ and $\pi_{2}=1$. In words, the economy is deterministic, and ends for sure in period 3 .
1 - Assume time- 0 trading and no money. Write budget constraints of agents of generations 0 to 3 (use prices $\left.q_{i}^{0}\right)$. Compute their offer curves. Show that autarky is an equilibrium and that the perfect smoothing allocation

$$
\left(c_{1}^{0},\left\{c_{i}^{i}, c_{i+1}^{i}\right\}_{i=1,2}, c_{3}^{3}\right)=\left(\frac{1}{2},\left\{\frac{1}{2}, \frac{1}{2}\right\}, \frac{1}{2}\right)
$$

is not and equilibrium. Discuss.
2 - Assume now sequential trading. A quantity of money M is distributed to the old of period 1 . Denote p_{i} the price of one unit of good in terms of the currency. Show that there cannot be any monetary equilibrium.

Now assume that the world never ends, - i.e. $\pi_{i}=0 \forall i \geq 1$.
3 - What are the two stationary equilibria with time-0 trading (and no money)?
$4-$ What is the unique stationary monetary equilibrium with sequential trading?

*

Enough for the warm-up. Assume now that $\left.\pi_{i}=\pi \in\right] 0,1[\forall i \geq 2$. For an active period i (by active, we mean not after the end of the world), denote $x_{i}\left(s_{i}\right)$ any variable of period i, with $s_{i} \in\{E \cdot \bar{E}, \varnothing\}$.
5 - Assume time-0 trading and no money. Write the maximization problem of generation $i>1$ (expected utility and intertemporal budget constraint). Keep in mind that prices depend on the state of the world. Derive first order conditions. Can autarky be an equilibrium? Can perfect smoothing be an equilibrium? Discuss.

6 - Assume now sequential trading and that the old of generation is endowed with M units of money. Can perfect smoothing be an equilibrium? Find a condition on π for the existence of a stationary monetary equilibrium. What are the equilibrium quantities at this equilibrium. Discuss.

I - THR END of THR WORLD IN AN OLG DODDEL -

Modelis. pend $1 \quad 2 \quad 3 \quad 4 \quad 5 \ldots$ (inlk the ustuchan $\pi_{1}=0$)

1. We look at the folloury deterainistic patt:

Nonmalen $q_{1}^{0}=1$
Budget costanh are gen $0: C_{1}^{0} \leqslant \varepsilon \quad$ (1)
gen 1: $c_{1}^{1}+q_{2}^{0} c_{2}^{1}=1 \varepsilon+q_{2}^{0} \varepsilon$
gen $2 \quad q_{2}^{0} c_{2}^{2}+q_{3}^{0} c_{3}^{2}=q_{2}^{0}(1-\varepsilon)+q_{3}^{0} \varepsilon$
gan $3 \quad c_{3}^{3} \leqslant 1-\varepsilon \quad$ (2)
Defore $\alpha_{i}=\frac{q_{i=1}^{0}}{q_{i}^{0}}$, FOC for generation i is $\frac{c_{i}^{i}}{c_{i=1}^{i}}=\alpha_{i}$ (3)
and $B C^{\prime}$ s $c_{i}^{i}+\alpha_{i} C_{i=1}^{i}=1-\varepsilon+\alpha_{i} \varepsilon$ (4)
(3) $\Rightarrow c_{i}^{i}=d_{i} c_{i+1}^{i} \rightarrow$ phey in $(4):\left(2-\frac{\varepsilon}{c_{i+1}^{i}}\right) c_{i}^{i}=(1-\varepsilon) \quad(5)<$ off ε R cunv ε

Def: An equabisiu is $\left.\left(c_{1} \mid c_{i}^{i}, c_{i=1}^{i}\right\}_{i=12}, c_{3}^{3}\right)$ st. $\left\{\begin{array}{l}(1),(2),(5) \text { are sabsf } u d \\ \text { alloc. are feasible: } c_{i}^{i}+c_{i}^{i} \leqslant 1\end{array}\right.$

- Con autaity he an equulbsuio?
- \#t is feosuble
- Are thes price far whie (i) (2) (5) ane salsfed?

$$
\text { yosif } \alpha_{1}=\frac{1-\varepsilon}{\varepsilon}, \quad \alpha_{2}=\frac{1-\varepsilon}{\varepsilon}, \quad R_{1}=R_{2}=\frac{1}{\alpha}=\frac{\varepsilon}{1 \varepsilon}<1
$$

ar - Com perfect suoothny be an equelibin?
$L_{>}$low culkeotrate eq.

$$
\text { fer gen } 1 \text { and } 2 \text { : ve reed } \alpha_{1}=\alpha_{2}=\frac{1 / 2}{1 / 2}=1 \Rightarrow R_{1}=R_{2}=1
$$

but for gevarubu 3: $C_{3}^{3}=\frac{1}{2}$ is not an optual choice
\Rightarrow Not an equlibium.
\rightarrow the lat peirod kills the perfect smoothry equlibuon.

2- W. th money, generation i problem is: max $\log c_{i}+\log c_{i+1}^{i}$

$$
\begin{array}{cl}
\text { st. } & c_{i}^{i}+\frac{m_{i}^{i}}{P_{i}} \leq 1-\varepsilon \\
& c_{i+1}^{i} \leq \frac{m_{i}^{i}}{P_{i-1}}+\varepsilon \\
m_{i}^{i} \geqslant 0
\end{array}
$$

Take the last period $(t=3)$
The young of the last period $B C$ is $C_{3}^{3} \leq 1-\varepsilon-\frac{m^{3}}{P_{3}}$
and then optimal choice's $m_{3}^{3}=O$ (No reason to save as the j will not live the nt period)
Therefore, giver that in equalbisium $\frac{m_{2}^{2}}{P_{3}}=\frac{m_{3}^{3}}{P_{3}}=0$
such that $B C$ of gen 2 ol is $c_{3}^{2}=\frac{m_{2}^{2}}{P_{3}}+\varepsilon=\varepsilon$
given That $\frac{m_{2}^{2}}{\rho_{3}}=0$, it is optaal for gen 2 to choose $m_{2}^{2}=0$

Te sawe reasonning applies to geveratur 1: $m_{1}^{\prime}=0$
Traefone, money masket equlbinium ì penod 1 úplís $\frac{M}{P_{1}}=\frac{M_{1}}{P_{1}}=0$
$\Rightarrow p_{1}=+\infty \quad$ (money has no value)
\rightarrow the orl, equilibrium is Trenfore autarky.

We now move to a model with infinite horizon. That is exactly the one we have seen in class.

3- Tue- O. Traduy $\left\{\begin{array}{l}\text { Max } \log c_{i}^{i}+\log c_{i+1}^{i} \\ \text { st. } q_{i}^{0} c_{i}^{i}+q_{i=1}^{0} c_{i+1}^{i} \leqslant q_{i}^{0}(1-a)+q_{i+1}^{0} \varepsilon\end{array}\right.$
der $\alpha_{i}=\frac{q_{i q}^{i}}{q_{i}^{0}}$, offer curve is green by

$$
\begin{aligned}
& c_{i}^{i}+\alpha_{i} c_{i=1}^{i} \leqslant(1-\tau)+h_{i} \varepsilon \\
& \frac{c_{i}^{i}}{c_{i=1}^{i}}=\alpha_{i}
\end{aligned}
$$

$$
\Rightarrow \quad \alpha_{i}=\frac{1}{\varepsilon}-\frac{\frac{1}{\varepsilon}-1}{\alpha_{i-1}}(6)
$$

Shatomay solutes to (6) are $* \alpha=1 \Rightarrow c_{i}^{i}=c_{i+1}^{i}=\frac{1}{2}$ and $c_{p}^{\infty}=\frac{1}{2}$ is feasible because $\frac{1}{2}+\frac{1}{2}=1=\varepsilon+1-\varepsilon$

$$
\text { , } \alpha=\frac{1-\varepsilon}{\varepsilon} \Rightarrow c_{i}^{i}=1-\varepsilon, c_{i=1}^{i}=\varepsilon, c_{1}^{0}=\varepsilon
$$

= autarky.
$\alpha=1$ is the high intact rate stationary equilibium and $\alpha=\frac{1-\varepsilon}{\varepsilon}$ is the bor one.
L. with sequential trading and money,
generation i max $\log c_{i}+\log c_{i, 1}^{i}$
st. $c_{i}^{i}+\frac{m_{i}^{i}}{p_{i}} \leq 1-\varepsilon$
\rightarrow say funclan $y_{i}^{i}-c_{i}^{i}=s\left(\alpha_{i}\right)$

$$
c_{i+1}^{i} \leq \frac{m_{i}^{i}}{p_{i-1}}+\varepsilon
$$

$$
=\frac{1}{2}\left(1-\varepsilon-\alpha_{i} \varepsilon\right)
$$

$$
m_{i}^{i} \geqslant 0
$$

with $d_{i}=\frac{P_{i+1}}{P_{i}}$
equabium : $\left\{\begin{array}{l}\frac{\eta}{P_{i}}=s\left(d_{i}\right) \\ \alpha_{i}=\frac{P_{i+1}}{P_{i}} \\ s\left(d_{i}\right)=\frac{1}{2}\left(1-\varepsilon-d_{i} \varepsilon\right)\end{array}\right.$

$$
\begin{aligned}
2 \pi & =p_{i}\left(1-\varepsilon-p_{i, 1} \varepsilon\right) \\
p_{i} & =\frac{2 D}{1-\varepsilon}+\frac{\varepsilon}{1 z} p_{i}=1
\end{aligned}
$$

$$
\Leftrightarrow \frac{\pi}{p_{i}}=\frac{1}{2}\left(1-\varepsilon-\frac{p_{i+}}{p_{i}} \varepsilon\right) \quad \Leftrightarrow \quad p_{i}=\frac{2 \pi}{1-\varepsilon}+\frac{\varepsilon}{1-\varepsilon} p_{i+1}=\text { (solpeforwand) }
$$

The oubjslalumay eq. is $p=2 \pi, d=1$
and then $s=\frac{1-2 \varepsilon}{2}, c_{i}^{i}=1-\varepsilon-\frac{1-2 \varepsilon}{2}=1-\frac{1}{2}-\varepsilon+\varepsilon=\frac{1}{2} \quad \forall i$

$$
C_{i=1}^{i}=\varepsilon+\alpha\left(\frac{1-2 \varepsilon}{2}\right)=\varepsilon \frac{H}{2}-\varepsilon=\frac{1}{2} \quad \forall i
$$

Ls the st. eq. is the perfect smoothing one.

Now $\left.\pi_{r}=\pi \in\right] 0,1[$

5- Time O Trading
in period i, if the economy is active (meaning that the world has not ended before), 2 states are possible $s_{i}=E$: The end of the wold is next period
$\left\{s_{i}=\bar{E}\right.$: Ike end of the world is not for the next pend
$=$ As of tune 0 , generation $i>1$ maximizes

$$
\begin{aligned}
& (1-\pi)^{i-1}\left[\pi\left(\log c_{i}^{i}(E)+\log c_{i=1}^{i}(\phi)\right)+(1-\pi)\left(\log c_{i}^{i}(E)+((-\pi)) \log c_{i=1}^{i}(E)+\pi \log c_{i=1}^{i}(E)\right)\right]+(1-\pi)^{i-2} \pi c_{i}^{i}(\phi)
\end{aligned}
$$

and generature i budget constheint is

$$
\begin{aligned}
q_{i}(\phi) c_{i}^{i}(\phi) & +q_{i}(E) c_{i}^{i}(E)+q_{i+1} c_{i=1}^{i}(\phi)+q_{i}(\bar{E}) c_{i}^{i}(E)+q_{i+1}(\bar{E}) c_{i=1}^{i}(\bar{E})+q_{i+1}(E) c_{i+1}^{i}(E) \\
& \leqslant\left(q_{i}(E)+q_{i}(\bar{E})+q_{i}(\phi)\right)(1-\varepsilon)+\left(q_{i+1}(E)+q_{i=1}(\bar{E})+q_{i+1}(\phi)\right) \varepsilon \quad\left(\lambda^{i}\right)
\end{aligned}
$$

Nbte: As thee is nothade of ree the end of the wrld and no untitity, whe wite $q_{i+j}\left(s^{j} / s_{i}=\phi\right)=0 \forall j \geqslant 1$
$F \circ C$ are $(1-\pi)^{i-2} \pi \frac{1}{c_{i}^{i}(\phi)}=\lambda^{i} q_{i}(\phi)$ (1) $(1-\pi)^{i-1} \pi \frac{1}{c_{i+1}^{i}(\phi)}=\lambda^{i} q_{i+1}(\phi) \quad(4)$

$$
\begin{align*}
& (1-\pi)^{i-1} \pi \frac{1}{c_{i}^{i}(E)}=\lambda^{i} q_{i}(E)(2) \quad(1-\pi)^{i} \pi \frac{1}{c_{i+1}^{i}(E)}=\lambda^{i} q_{i \pi}(E) \tag{5}\\
& (1-\pi i)^{i-1} \times(1-\pi) \frac{1}{c_{i}^{i}(E)}=\lambda^{i} q_{i}(\bar{E})(3) \quad(1-\pi)^{i}(1-\pi) \frac{1}{c_{i=1}^{i}(\bar{E})}=\lambda^{i} q_{i+1}(\bar{E}) \tag{6}
\end{align*}
$$

$* \operatorname{Can}\left(\frac{1}{2}, \frac{1}{2}\right) \forall i \geqslant 1$ and $c_{1}^{0}=\varepsilon \quad b$ an equilibiur?
ait is feasible.
a prices will have to be $\frac{(4)}{(1)}: \frac{q_{i+1}(p)}{q_{i}(\phi)}=1-\pi \quad \frac{(5)}{(2)} \frac{q_{i+1}(E)}{q_{i}(E)}=1-\pi \frac{(G)}{(3)}: \frac{q_{i+1}(\bar{E})}{q_{i}(\bar{E})}=1-\bar{\pi}$
Normalerny, say, $q_{1}(\phi)=1$, we con fund all the $q_{i}\left(s_{i}\right)$.
\Rightarrow for thor pres, perfect snottruy will be an equlibiucm.
Note tet the real ulours factor is rot 1 but $1-\pi<1$
4 The nus of the wald ending plays luke a descourt factor.

* Can $(1-\varepsilon, \varepsilon)$ be an equelibuum?
sit os feasible
a it is an eq. of purees are such that $\frac{q_{i_{1}}\left(s_{i}\right)}{q_{i}\left(s_{i}\right)}=\frac{\varepsilon}{1-\varepsilon} \cdot(1-\pi) \quad \forall s_{i} \in\{E, E, \phi\}$
6- Sequential tRading with money.
- f $S_{i}=E$, then money dree not have a funte pure and equlubur mist be:
$\quad e_{i}^{i}(t)=1-\varepsilon \quad c_{i}^{i-1}(E)=\varepsilon \quad$ and $\quad c_{i+1}^{u}(\phi)=\varepsilon \quad c_{i+1}^{i+1}(\phi)=1-\varepsilon$
- If $s_{i}^{-}=\phi \quad i_{i}^{i-1}(\phi)=\varepsilon, \quad c_{i}^{i}(\phi)=1-\varepsilon$
- ff $S_{i}=\bar{E}$, the problem of geneatior i is (assanuy a moretay equelibsum)

$$
\max \log c_{i}^{i}(E)+(1-\pi) \log c_{i+1}^{i}(\bar{E})+\pi \log \underbrace{c_{i=1}^{i}(E)}
$$

ε no slavn just before

$$
\text { s.1. } c_{i}^{i}(\bar{E})+\frac{P_{i+t}(\bar{E})}{P_{i}(\bar{E})} c_{i+1}^{i}(\bar{E}) \leqslant 1 \varepsilon \varepsilon+\frac{P_{i+\pi}(\bar{E})}{P_{i}(\bar{E})} \times \varepsilon \text { as sho }
$$

$$
\begin{equation*}
F \propto C \Rightarrow \frac{P_{i+1}(E)}{P_{i}(\bar{E})}=(1-\pi) \frac{c_{i}^{i}(\bar{E})}{c_{i+4}^{i}(\bar{E})} \tag{x}
\end{equation*}
$$

\rightarrow Can ve find a menetay equalibum witte conslant price ant constant $C_{y}(\bar{E})$ and $C_{0}(\bar{E})$? (as limg as the ened of the world is not dnawn):
$\left.\begin{array}{l}P(\bar{E})=\text { constalt } \Rightarrow \text { fron }(x):(1-\pi) C_{0}(\bar{E})=C_{y}(\bar{E}) \\ \text { usong the resouce custhain } \quad C_{0}(\bar{E})+C_{y}(\bar{E})=1\end{array}\right\} \Rightarrow \begin{aligned} & C_{y}=\frac{1}{2-\pi} \\ & C_{0}=\frac{1-\pi}{2-\pi}\end{aligned}$

$$
C_{0}=\frac{1-\pi}{2-\pi}
$$

- We ned bo check that the is feasible with portve saungs (sothat $m^{i} \geqslant 0$)

$$
\frac{m_{i}(\bar{E})}{p_{i}(\bar{E})} \geqslant 0 \Leftrightarrow c_{y}<1-\varepsilon \Leftrightarrow \frac{1}{2-\pi}<1-\varepsilon \Leftrightarrow \pi<\frac{1-2 \varepsilon}{1-\varepsilon}
$$

$\therefore \quad \Delta$ i if the probablety of the eve of the varld is not too lagge $\left(\pi<\frac{1-2 \varepsilon}{1 \varepsilon}\right)$, teu ore can sustain a moretay equelibuum, as long as the end of the woillis nol drown.
\rightarrow there is moone smoothny thon in antrailg \Rightarrow higher velfare.

II - Business Cycles Movements at a Temporary Equilibrium

Data show that consumption, investment and labour all move in the same direction in the business cycle. This is what we call "business cycle movements". We are here interested in how the economy responds to a news about a future change in the economy, that does not affect current preferences nor technology. Can this create a business cycle movement?

The model we consider is a perfect competition complete market growth model. Let's assume the economy is deterministic. Preferences are

$$
\sum_{t=0}^{\infty} \beta^{t}\left(U\left(c_{t}\right)-V\left(L_{t}\right)\right)
$$

and technology is

$$
Y_{t}=F\left(K_{t}, L_{t}\right)
$$

and

$$
K_{t+1}=(1-\delta) K_{t}+I_{t} .
$$

It is assumed that $V_{L}>0, V_{L L}>0, U_{C}>0, U_{C C}<0, F_{K}>0, F_{K K}<0, F_{L}>0, F_{L L}<0$ and $F_{K L}>0$. We also assume that F is concave. K_{0} is given and the transversatity condition

$$
\lim _{T \rightarrow \infty} \beta^{T} U_{C_{T}} K_{T+1}=0
$$

is imposed.
1 - Write the Planner problem (that will give competitive equilibrium quantities) and derive, for each $t>0$, three equations that can be interpreted as a good market equilibrium (GM) condition, a labour market equilibrium condition (LM) and a Euler equation.
$\mathbf{2}$ - Temporary equilibria are defined as the triplets $\left(C_{t}, L_{t}, I_{t}\right)$ that satisfy (GM) and (LM). Why is that an interesting concept?

3 - Assume we are in period t and that an unexpected change in future U or F occurs (a "news"). Explain why such a news will directly enter only in the Euler equation, so that in period t, the economy will have to move along (GM) and (LM).

4 - Fully differentiate (GM) and (LM) (note that K_{t} is predetermined and therefore cannot change) and, for a given I_{t}, draw those two equations in the plane $\left(C_{t}, L_{t}\right)$.

5 - Assume that the news causes an increase in $I_{t}\left(d I_{t}>0\right)$. Show that then consumption and labour will move in opposite direction. Can news create business cycle movements in that economy?

6 - Assume now that technology is given by $C=G(K, L, I)$, with $G_{K}>0, G_{K K}<0, G_{L}>0, G_{L L}<0$, $G_{K L}>0$ and $G_{I}<0$. Show that this formulation encompasses the previous case.

7 - Show that temporary equilibria can now display business cycle fluctuations following a news shock if $G_{L I}$ is positive and large enough. How would you interpret that?

- ECON0107- MIDTERT EKAT - 2020-2021 - SOLUTLON -

II Business cycles tranenants at a tenporant egullibrium.
1 Planner problem: Dax $\mathscr{L}=\sum \beta^{r}(\mu\left(C_{r}\right)-V\left(L_{r}\right)+\lambda_{r}(F\left(K_{r}, L_{r}\right)-C_{r}-\underbrace{}_{-I_{r}}+(1-\delta) K_{r})$
FOC $\quad \mu_{C}(C) F_{L}(K, L)=V_{L}(L) \quad$ (LM)

$$
\begin{align*}
& \mu_{c}(c)=\beta \mu_{c}\left(c^{\prime}\right)\left(1+F_{k}\left(k^{\prime}, L^{\prime}\right)-\delta\right) \quad \text { (Evian) } \\
& c+I=F(k, L) \quad(G \pi)
\end{align*}
$$

2. Temporany equlebrún: (GD), (LR): puts nestrictions on the geint movements of (C, I, L) for given expectabory

3- A shack in the fulme doss not euler cmedly me (Ln) and (GT) , but orly in the right hand sole of the Euler equation
(4) $(G \Pi) \Rightarrow d C+d I=F_{L}(K, L) d L \Rightarrow d L=\frac{1}{F_{L}}(d C+d I)$

$$
(L \cap) \Rightarrow \mu_{c c} F_{L} d c+\mu_{c} F_{L L} d L=V_{L L} d L \Rightarrow \tilde{Q}_{L}=\frac{\mu_{c c} F_{L}}{v_{L L}-\mu_{c} F_{L 2}} d C
$$

3- A shack in the fulme dos not euler chnectly m ($L \pi$) and $(G \pi)$, but orly in the right hand sole of the Euler equation
(4) $(G \Pi) \Rightarrow d C+d I=F_{L}(K, L) d L \Rightarrow d L=\frac{1}{F_{L}}(d C+d I)$

$$
(L \cap) \Rightarrow \mu_{c c} F_{L} d c+\mu_{c} F_{L L} d L=V_{L L} d L \Rightarrow \tilde{Q}_{L}=\frac{\mu_{c c} F_{L}}{v_{L L}-\mu_{c} F_{L 2}} d C
$$

5. assure $d I>0$

we see that, because a charge in expectations waves the temporary equlbbruem along the LR curve, which is decuasry if leisure and consumption are normal goods, so that C and L move in opposite duection. \rightarrow news carrot cerate buscness cycles

6-Prenaus care is $C_{t}=G\left(k_{r}, L_{r}, I_{r}\right)=F\left(k_{r}, l_{r}\right)-I_{L}$
so that $G_{I}=-1, G_{L I}=0$
A general G function coneopinds to joint production of C and I out of K and L.
7. Teuporara equilibrium is now
$(G T) \quad C=G(K, L, I) \Rightarrow d C=G_{L} \partial L+G_{I} d I$
$(L n) \quad \mu_{c}(C) G_{L}\left(L_{1} L, I\right)=V_{L}(L) \Rightarrow \mu_{C C} G_{L} d C+\mu_{C} G_{L} d L+\mu_{C} G_{L I} \partial I=V_{L L} d L$
$\Rightarrow \quad(G-n) \therefore d L=\frac{1}{G_{L}}(d C+d I)$
(Ln) $d L=\frac{\mu_{C C} G_{L}}{V_{L L}-\mu_{C} G_{L L}} d C+\underbrace{\frac{\mu_{C} G_{L I}}{V_{L L}-u_{C} G_{L L}} d I}_{\text {new Perm here }}$

We see trait one can have now a joint increase in C, L and I (or a joint decrease of the revs causes I to foll)
What does $G_{L I} \gg$ wean? Maigual productucty of labour in the consunptron good sector invecuses when the economy produces more investment.

Thus'y a coese of 'eccromius of scope' in a jeint production set up [a bit súmilar to increasing retuns, but here G slays conca ve]

III - Incomplete Markets and Portfolio Choice

Consider a model with a continuum of households who are subject to idiosyncratic returns on their investment. In particular, each household can invest in a risk-free bond with rate of return r and a risky capital whose rate of return is random and variable across individuals. Assume that households can borrow using the risk-free bond while their investment in risky capital has to be positive. More specifically, the household problem reads:

$$
\begin{array}{ll}
\max _{c_{t}, \phi_{t}} & \sum_{t=0}^{\infty} \beta^{t} \ln c \\
\text { s.t. } & A_{t+1}=\left(A_{t}-c_{t}\right)\left((1+r) \phi_{t}+\left(1+z_{t}\right)\left(1-\phi_{t}\right)\right)+e
\end{array}
$$

where A is cash-on-hand and e is a constant endowment. The household decides on consumption each period, c_{t}, and the fraction of savings, ϕ_{t}, invested in the risk-free asset. The fraction ($1-\phi_{t}$) of savings goes into capital with stochastic return z_{t} (iid across time and households).

1 - What is the natural borrowing limit for the risk-free asset?
e / r. Think of bond holdings being shifted by this limit such that you only have to consider non-negative asset holdings.
2 - Write down the Bellman equation corresponding to the household problem. What is the state variable?

$$
V\left(A_{t}\right)=\max _{c_{t}, \phi}\left[\ln c_{t}+\beta E_{t} V\left(\left(A_{t}-c_{t}\right)\left((1+r) \phi+\left(1+z_{t}\right)(1-\phi)\right)\right)\right]
$$

The problem is autonomous so we write the current value Bellman equation with time independent value function V.

3 - Derive the first-order conditions. What is the interpretation?

$$
\begin{array}{ll}
c_{t} ; & 1 / c_{t}-\beta E_{t} V^{\prime}\left(A_{t+1}\right)\left((1+r) \phi+\left(1+z_{t}\right)(1-\phi)\right)=0 \\
\phi_{t} ; & E_{t} V^{\prime}\left(A_{t+1}\right)\left(A_{t}-c_{t}\right)\left(r-z_{t}\right)=0
\end{array}
$$

4 - Guess and verify the solution to the Bellman equation. (Hint: ln utility!) Describe the properties of the optimal consumption and portfolio policy.

Guess and verify: $V\left(A_{t}\right)=a \ln A_{t}+B$ for some constants a and B. Substitute into the FOCs to get:

$$
\begin{aligned}
c_{t} & =\frac{A_{t}}{1+\alpha \beta} \\
E_{t} \frac{\left(r-z_{t}\right)}{\left((1+r) \phi_{t}+\left(1+z_{t}\right)\left(1-\phi_{t}\right)\right)} & =0
\end{aligned}
$$

The latter implies that ϕ_{t} is constant since z_{t} is iid. Now solve for constant a by substituting the solutions to the FOCs and the guess into the Bellman equation. This yields after same algebra:

$$
a \ln A_{t}+B=(1+\alpha \beta) \ln A_{t}+k
$$

where k is some constant. This also verifies that the guess worked.
5 - Discuss the implications for aggregate asset holdings. Under what conditions does it converge?

Asset holding evolve according to

$$
\begin{aligned}
& A_{t+1}=\beta A_{t}\left((1+r) \phi+\left(1+z_{t}\right)(1-\phi)\right)+e, \\
& A_{t+1}=\beta A_{t} R+e .
\end{aligned}
$$

Hence, aggregate assets follow a random walk with positive drift for $\beta R=1 . \beta R<1$ is necessary for convergence.
6 - Now suppose that we have a closed economy consisted of individuals like above who are symmetric and can trade the risk-free bond. Define an equilibrium in this economy.

A recursive competitive equilibrium is a value function V; policy functions c, ϕ for the household; an interest rate r; and, a stationary measure such that:

1. given interest rate r, the policy functions c, ϕ solve the household's problem given by the Bellman equation and V is the associated value function
2. the asset market clears: $0=\int_{A} \phi A-e / r$, where bond holdings are shifted by e / r to be non-negative reals.

7 - Now suppose you would like to analyse aggregate shocks, e.g. a shock to the variance of capital returns. What state variables are needed to describe the evolution of the economy? How would you compute the solution?

Key is that the policy functions are linear. Hence, the distribution of households does not matter for predicting the interest rate. The state variables only consist of aggregate states. This includes \bar{A} and potentially other aggregate states like inertia in the variance of returns. Different from Krusell\&Smith, one can therefore compute the RE equilibrium using standard methods.

IV - McCall Model

Consider a worker who draws every period a job offer from a cumulative distribution $F(w)$ to work forever at wage w. Each time the worker draws a job offer a cost C incurs, where $0<C<E[w]$. The worker's objective is to maximize the expected value of $w-n C$, where w is the accepted wage offer and n is the number of job offers the worker has drawn. Let V denote the expected value of $w-n^{\prime} C$ of a worker who has just rejected a job, where n^{\prime} is the number of jobs the worker will draw from that point on.
1 - Explain why the worker accepts a job offering \tilde{w} if $\tilde{w}>V$, and rejects its if \tilde{w} if $\tilde{w}<V$.
Note that $V=E\left[w-C n^{\prime}\right]=E[w]-C E\left[n^{\prime}\right]$ and is the expected wage the worker will eventually accept if she searches more minus the expected cost of further searching. The exp. cost of further searching is the expected number of jobs to be sampled multiplied by the (known) cost of sampling each job. Thus V can be interpreted as the expected value of further searching. If the worker is offered a job that pays a wage of \bar{w}, where \bar{w} exceeds the expected value of further searching, it is optimal to stop searching and take the job. If the wage offer is less, it is optimal to reject and continue searching.
2 - Explain why V satisfies $V=F(V) V+\int_{w=V}^{\infty} w f(w) d w-C$, where f is density function associated with F.
Not that it can be rewritten as:

$$
V=\frac{\int_{w=V}^{\infty} w f(w) d w}{1-F(V)}-\frac{C}{1-F(V)}
$$

First term represents the expected wage conditional on that wage being greater than the reservation wage of V. Second term represents the expected cost of sampling jobs. Thus $V=E[w]-C E\left[n^{\prime}\right]$ must satisfy this equation.
3 - Does a searcher ever want to accept a job that has been previously rejected?
No. V is constant and so is \bar{w}.

Now, suppose w is distributed uniformly on $[\mu-a, \mu+a]$ and that $C<\mu$. This implies that $f(w)=1 / 2 a$ and $F(w)=\frac{w-(\mu-a)}{2 a}$.
4 - Find V in terms of μ, a, and C.
Start from

$$
V=\left[\frac{V-(\mu-a)}{2 a}\right] V+\int_{w=V}^{\mu+a}(w / 2 a) d w-C
$$

The integral is: $1 / 4 a\left[(\mu+a)^{2}-V^{2}\right]$
Plug back to get:

$$
V^{2}-2(\mu+a) V+(\mu+a)^{2}-4 a C=0
$$

Using the quadratic formula gives:

$$
V=\frac{2(\mu+a)+/-4 \sqrt{a C}}{2}
$$

Ignore $V>\mu+a$ since $\mu+a$ is the highest wage, which gives the solution for V.
5 - How does an increase in a affect V? Explain intuitively.

$$
\delta V / \delta a=1-\sqrt{(C / a)}
$$

With $C<a$, a rise in a increases the reservation wage. Option value effect.

