2023-2024 — Econ 0107 — Macroeconomics |

Lecture 1 : Complete Markets

(Chapter 8 in LJUNQVIST & SARGENT 4th edition)
Franck Portier
f.portier@ucl.ac.uk

University College London

Version 1.0
01/10/2023

1/57


mailto:f.portier@ucl.ac.uk

1. Time O versus Sequential Trading

» This chapter describes competitive equilibria for a pure exchange infinite horizon
economy with stochastic endowments.
» This economy is useful for studying risk sharing, asset pricing, and consumption.
> Two market structures:
X ARROW-DEBREU structure with complete markets in dated contingent claims all
traded at time 0,
X sequential-trading structure with complete one-period ARROW securities
P These two imply different assets and timings of trades, but have identical
consumption allocation.
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2. Endowments and Preferences

We start by characterizing:
1. The physical (and stochastic) properties of the resources available to the agents.

2. Agents preferences.
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2. Endowments and Preferences
Histories

> We consider a stochastic event or state variable s; € S.
> Let's define the history of events up to time t as:

st = {s0,51,...,5t}

» The unconditional probability of observing state s; in history st is

7Tt(5t)
» Conditional probabilities, for history s conditional on history s™, 7 < t, are given
by:
me(st|sT)

> Note: we will not immediately assume a Markov structure.
X Markov structure = memoryless property of a stochastic process, which means that
its future evolution is independent of its history.
X While useful for some results, it is not necessary for others.
> Trade after observing sp, therefore mo(sp) = 1.
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Endowments

> We assume the economy is populated by / agents, denoted by index i = 1,2, ..., /.

» Each agent receives an endowment which is a function of the random history st:
it
yi(s).
» Each household will be associated with a consumption plan

¢ = {ci(s")} 2.
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2. Endowments and Preferences
Preferences

» Consumption plans will be ordered using the following function:

ZZﬂtu[ct Ve (st EOZﬂtu[ct

t=0 st

> Regularity conditions on ul.].
X Increasing, concave and smooth.
X Inada condition.
limu'(c) = +o0
cl0

» Consumers share probabilities (views of the world)
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2. Endowments and Preferences
Allocations

> All histories are fully observable, verifiable and contractable upon.

Definition 1

An allocation of resources is a collection of consumption plans C = {c¢;}!_;.

Definition 2

An allocation of resources is feasible if:

Zci(st)SZy{(st), Vt and Vs'.

1

> Notice: we are not considering storage.
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3. Alternative Trading Arrangements

> We will consider two different trading arrangements.

> We will then show their equivalence.

1. We will first consider a situation where all trades happen at time 0.

X Agents will trade state and history contingent claims.
X Once the trade is done, markets close for subsequent periods.
x  Contracts are enforced in subsequent periods and commitments honored.

2. We will then consider a sequential trading framework.
X In each period agents will trade one-period contingent claims.

» Those two trading arrangement

X share the same consumption allocations
X share the property that allocations depend only on aggregate resources at each date
and on a a time-invariant wealth distribution.
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3. Alternative Trading Arrangements

Figure 1: Time 0 ARROW-DEBREU trades: all
possible histories are considered at time 0.

t=0 t=1

The ARROW-DEBREU commodity space for a two-state Markov
chain. At time 0, there are trades in time t = 3 goods for each
of the eight nodes that signify histories that can possibly be reached

starting from the node at time 0.

t=2

t=3

©,1,1,1)

0,1,1,0)

(0,10.1)

0,1,00)

00,1.1)

00,10

000,1)

00.00)

Figure 2: Sequential trades in 1-period ARROW

securities
t=0 t=1 t=2 t=3
(110,0,1)

(010,0,1)

The commodity space with ARROW securities. At date t = 2, there
are trades in time 3 goods for only those time t = 3 nodes that can
be reached from the realized time t=2 history (0,0,1).
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4. PARETO Problem
Definition 3
An allocation is said to be PARETO-optimal if any re-allocation that makes one
household strictly better off also makes one or more other households worse off.
Definition 4
An allocation is said to be efficient if it is PARETO-optimal.

> We can construct efficient allocations from a PARETO problem:

> A social planner maximizes the weighted average of individual utilities using some
arbitrary non-negative PARETO weights \;,i =1,..., /.

I
W = Z/\;U(ci) subject to

i=1
> cl(sh) < yi(sh), vt and Vst

1
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4. PARETO Problem

> Consider the Lagrangian for this problem:

0o I
L_ZZ{ZA,ﬂfu(cg(sf s') + O:(s Z[yt ) —ci(s )]}

t=0 st i=1

where 6;(s") are (non-negative) Lagrange multipliers associated to the feasibility
constraints relevant in each state and time.

> First order condition w.r.t. ci(s?):

B (cl(sh))me(s?) = A7 t0.(st) Vi, t, s

» Considering the ratio of this condition to that for consumer 1:
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4. PARETO Problem
» Solving for ci(sf):

ci(st) = o (L (c(s1)).

> Substituting in the feasibility constraint:

i

SR ) = )

one equation, one unknown

Proposition 1

(%)

An efficient allocation is a function of the realized aggregate endowment and depends
neither on the specific history leading up to that outcome nor on the realizations of

individual endowments.

ci(s’y =cl(37) V's' and 57 such that Zy{(st

J

) =D Y.
j
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4. PARETO Problem

> Solving for ci(s?):
A

ci(s) = v v (e (sY): (*)
» Substituting in the feasibility constraint:
1A j
DT (D) = D vils"). (%)

i

-~

one equation, one unknown
> To solve for P.O. allocations, we will for each realization of history s':

% Solve (xx) for c}(s?)
% Solve (x) for all i # 1 ci(s?)
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4. PARETO Problem

Notice:

» PARETO weights can be normalized (only ratios matter) ~~ we can impose
Yo Ai=1

> PARETO weights are time invariant.

> Relative marginal utilities depend on PARETO weights only, so that they are time
invariant.

> Consumer's i relative share of the aggregate endowment varies with his PARETO
weight ;.

> So far we have described the allocations, not the specific trades made to achieve

those allocations.
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5. Time-0 trading: ARROW-DEBREU securities.

>

>

Here we describe a particular market organisation that reaches as
PARETO-€efficient allocation.

At time zero consumers trade entitlements to state-contingent consumption
streams.

The price of a security that delivers one unit of consumption at time t if the
history up to that point has been st is g%(s?).

In other words, q2(s?) is the price at time 0 of time t consumption contingent on
history st, in terms of an abstract unit of account.

The budget constraint for a consumer entering the time 0 market will then be:

DD aRsells) < 30D ad(shyils’):

t=0 st t=0 st

Consumer i will maximize utility given this budget constraint.

Notice: there is a single budget constraint because all trades occur at time 0.
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5. Time-0 trading: ARROW-DEBREU securities.

» For a generic household i

max U(c ZZ,Btu[ct Y7e(sh)

t=0 st
s.t. - o
DD al(sHei(s) <D 0> ad(sNyilsh) (1)
t=0 st t=0 st
> First order condition will be:
8U(Ci) _ 0/t
dci(st) 1iqe (s°)-

wi is the Lagrange multiplier associated with budget constraint.
> Given intertemporal separability of preferences,

aU(Ci)_t/;t N :
dcl(st) Bu'[cl(s)]me(s?) = pmig?(sh).
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5. Time-0 trading: ARROW-DEBREU securities.

Definition 5

A price system is a sequence of functions {q?(s?)}22,.

Definition 6

An allocation is a list of sequence of functions ¢’ = {c}(s?)}22,.

Definition 7

A competitive equilibrium is a feasible allocation and a price system such that, given
the price system, the allocation solves each household’s problem.
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5. Time-0 trading: ARROW-DEBREU securities.

> Notice that:

B [ef(s)]me(s") = pigl(s)
implies: '
(G T
Ule(sh]
» An equilibrium, therefore, solves:

1. The aggregate feasibility constraint.
2. The individual budget constraint for all individuals.
3. The condition on the ratios of marginal utilities.
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5. Time-0 trading: ARROW-DEBREU securities.

» Notice that one can solve the equation for the ratio of marginal utilities for ¢/(s?)
as a function of:

1. consumption of individual 1;
2. the ratio of Lagrange multipliers of individuals i and 1

i(stY = /14 u1cl(st Hi
a(s’) = { [t ( )Ml}

> Substituting in the aggregate feasibility constraints gets :
st} - 3
i

» This equation can be solved for c(s?).

> Notice that the right-hand-side is the aggregate endowment.
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5. Time-0 trading: ARROW-DEBREU securities.

Proposition 2

The competitive equilibrium allocation is a function of the realized aggregate
endowment and does not depend on time t or on the specific history or on the cross
section distribution of endowments: ci(s') = c.(s™) for all histories s* and S™ such

that ¥, yi(s*) = Y2, yI(57).

! )
» Remark: {%} ) and aggregate endowment in t are what determine the
J:

distribution of consumption at date t.
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5. Time-0 trading: ARROW-DEBREU securities.
Pricing functions.

» Having found the equilibrium, we can use expressions such has:
B [ei(s)]me(s) = pigl(s")

to determine the equilibrium price g9(s?).
Notice that prices are stochastic processes.
Price units are arbitrary so that we can for example normalize one price to unity.

A possibility is to set qJ(sp) = 1.

vVVvyvYyy

This implies u; = u'[c}(s0)]-
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5. Time-0 trading: ARROW-DEBREU securities.
Equilibrium optimality.

> An important property of the competitive equilibrium is that it is PARETO
optimal.

> This can be seen if set the PARETO weights in the Social Planner problem so that:
Ni=1/pi, Vi

> 0:(s") = gP(s").
» The coincidence of competitive equilibria and PARETO optimality is behind the
First and Second fundamental theorems of welfare economics.
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5. Time-0 trading: ARROW-DEBREU securities.
Equilibrium optimality.

Theorem 1

First Welfare Theorem: Any Competitive Equilibrium is PARETO optimal.

Theorem 2

Second Welfare Theorem: Under some regularity conditions, any PARETO optimal
allocation can be sustained as a competitive equilibrium.
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5. Time-0 trading: ARROW-DEBREU securities.
Equilibrium computation.

To compute the equilibrium on can use the NEGISHI algorithm to determine /1.
1. Fix an arbitrary (positive) value for p;. Guess some initial positive value for the

other u;. Compute:
ci(s') = u'—l{u'[cs(sf> “}
M1

S { ei(s") ;‘} = 3y,

i

2. Solve for equilibrium prices q?(s?):

qe(s*) = B u'[e{(s*)me(s )i *
3. Check the budget constraint for every i =1, ..., 1.

X For those i where ¢; is too high, raise u;.
X For those i where ¢; is too low, lower p;.

4. lterate previous steps until convergence.
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5. Time-0 trading: ARROW-DEBREU securities.

Equilibrium computation.

> In general, the computation of equilibrium is a difficult problem.

» Typically, the equilibrium prices depend on the wealth distribution (i.e. all the
individual endowment streams)

> There are some cases (particular preferences or endowment processes) where the
computation is simpler, as we do not need to iterate on PARETO weights.
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6. Simpler Computational Algorithm
6.1. Risk sharing

» The model we have described has important implications for risk sharing.
> Individuals with concave utility will want to smooth consumption over time.

> In the model we have studied, even without storage possibilities, smoothing is
possible if individual shocks are not perfectly correlated.

P Indeed we will consider examples in which individuals can smooth quite a bit.
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6. Simpler Computational Algorithm
6.1. Risk sharing

> Suppose utility is CRRA:

v -1

v =17~

v>0

» Then in the complete markets equilibrium:

[ci(sH " _ [el(s")] ™ Vi i
i oo

(st = d(f)(‘“)"’, Vil

Hj
» Individual consumptions are perfectly correlated.
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6. Simpler Computational Algorithm
6.1. Risk sharing

» The model implies that the consumption of different agents varies in the same
proportion so that the ratio stays constant over time.

> There is extensive cross-period and cross-states risk sharing.

> The factor of proportionality is given by the ratio of multipliers p;/p;, or,
alternatively, by the ratio of PARETO weights in the social planner program.

» From the FOC of the social planner program, we can notice that the only thing
that determines individual consumption is aggregate shocks:

u'[e(sOINBTe(s") = [ci(sT)] T NB Te(sT) = be(s7).
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6. Simpler Computational Algorithm
6.1. Risk sharing

> In this example, we can easily compute equilibrium prices. Using

2=

ci(s) = =) (1) 7. i

Hj
» and the price formula derived earlier

B [ei(s)]me(s") = pig?(s*)

> we obtain
a2(s) = p;ta; VB (Ve(sh)) Tme(s")

. i 1 -
where c;(s*) = @iy, (s%), ¥¢(s) = 22, vi(s?), i = <Zj (ZJ')W>

P> We have one normalisation choice, which amount to setting M,-_lozl-_7 for one i to
an arbitrary positive number.
> For example puyta;” =1

29 /57



6. Simpler Computational Algorithm
6.1. Risk sharing

> We then compute equilibrium as follows:

> Prices are obtained from
P (s") = B (Ve(s)) T me(s)

» Using those prices and consumer’s / budget constraint

SO @shei(s) = S5 ad(shyi(sh),
t=0 st t=0 st

> we obtain the consumption share «; as its share of total wealth evaluated at

equilibrium prices: '
_ Do s 42(sT)yi(st)
Deso 2ost G2 (sP)ye(s")

&7
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6. Simpler Computational Algorithm
6.1. Risk sharing

Empirical implications
> Using the Social planner FOC
> We have

d[el(sNNBUme(s") = [el(s] T NBEme(s) = 0uls) [ = g2(sY)].

> Taking logs:

—7 log(ct(s")) + log(Ai) + log(8me(s")) = log(0:(s")).
—7 log(ct(s")) + log(A) = log(6:(s)) — tlog(88) — log(me(s")).
» Taking this equation at two different points in time (t and 7) and subtracting one
from the other:

—[log(ci(s)) —log(ci(sT)] = log(6:(s")) + log(me(s")) — log(6(s"))
log(mr(s7)) — (t — 7) log(B) = vt.r-

» No index i in v -
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6. Simpler Computational Algorithm
6.1. Risk sharing

Empirical implications

P This equation gives an empirical prediction:

i ; 1
[log(ci(s")) — log(cr(s™)] = — Ve
> Note:
X Strong empirical test: individual consumption growth only depends on aggregate
growth.

X Townsend (1994) and others used this strategy explicitly.
X There are no residuals in this equation

P> Measurement error can be added.
P Taste shocks.
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6. Simpler Computational Algorithm
6.2. Other examples

» There are other examples in Chapter 8 of LJUNQVIST & SARGENT's book that
you have to work by yourself.
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7. Primer on Asset pricing

P> Many asset-pricing models assume complete markets and price an asset by
breaking it into a sequence of history-contingent claims, evaluating each
component of that sequence with the relevant “state price deflator” q?(st), and
then adding up those values.

> The asset is viewed as redundant, in the sense that it offers a bundle of
history-contingent dated claims, each component of which has already been priced
by the market.
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7. Primer on Asset pricing
7.1. Pricing Redundant Assets

> Let {d(s")}$2, be a stream of claims on time t, state s* consumption, where
d(st) is a measurable function of s;.
» The price of an asset paying the owner this stream must be

Py = > al(s)d(s")

t=0 st

» This can be understood as an arbitrage equation.
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7. Primer on Asset pricing
7.2. Riskless Consol

> A riskless consol offers for sure one unit of consumption at each period, i.e.
di(s') =1 for all t and s*.

P> The price is

po=>_ > ails)

t=0 st
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7. Primer on Asset pricing
7.3. Riskless strips

> Consider a sequence of strips of returns on the riskless consol.
> The time-t strip is the return process d; =1 if 7 =t > 0, and 0 otherwise.
» The price of time-t strip at 0 is

Pl => qi(s")
St
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7. Primer on Asset pricing

7.4.

>
| 4

| 4

Tail assets

Consider the stream of dividends {d(s¢)}¢>0

For 7 > 1, suppose that we strip off the first 7 — 1 periods of the dividend and
want to get the time-0 value of the dividend stream {d(s;)}¢>r.

Let p2(s™) be the time-0 price of an asset that entitles the dividend stream
{d(st)} >+ if history s7 is realized:

0 0
pASTI=D Y dk(59)d(s)
t>7 {st:57=s7}
Let us convert this price into units of time 7, state s7 by dividing by ¢2(s7):

0 sT 0 gt
s =B o 3 B

0
t>7 {5t:57 =57} 9 (s7)

Notice that for all consumers |

pey ) AL ]
%)= o) T Fala@E) D e )
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7. Primer on Asset pricing
7.4. Tail assets

> g7 (s") is the price of one unit of consumption delivered at time ¢, state s* in
terms of the date-7, state-s™ consumption good.

» The price at 7 in history s for the tail asset is
=Y Y aiE)dE
t>7 {5t:57=s7}

> This tail asset formula is useful if one wants to create in a model a time series of
equity prices: an equity purchased at time 7 entitles the owner to the dividends
from time 7 forward, and the price is given by the above formula.
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7. Primer on Asset pricing
7.4. Tail assets

t—7 /[Ct( )] st s7 *
(1) = B el ()

» We have shown that c/(sf) are not history dependant.
» Then the relative price in (x) is not history dependent.

Proposition 3

The equilibrium price of date-t > 0, state-s* consumption good expressed in terms of
date 7 (0 < 7 <'t), state s™ consumption good is not history dependent:

a; (s") = a1(59)
for j,k > 0 such that t — 7 = k — j and (s, St—1,...,57] = [Sk; Sk—1,-- -, S]]
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7. Primer on Asset pricing
7.5. Pricing One Period Returns

» The one-period version of equation (*) is

o (e )
q;-l—l(sT—H) = Biﬂﬂ(sﬂr—kﬂsﬂ')

u'(cr)
» The RHS is the one-period pricing kernel at time 7.
» The price at time 7 in state s” of a claim to a random payoff w(s;41) is given,
using the pricing kernel, by

Pr(sT) = s rals ST w(sr41)
E, [ﬁ cT+1) (57-5-1)}
where superscripts i and dependence to s; have been deleted.

> Let denote the one-period gross return on the asset by Rr11 = w(sr+1)/pL(s7).
Then, for any asset, the above equation implies

_ u'(cry1)
1=E; |:ﬁu,(CT)RT+1:|
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7. Primer on Asset pricing
7.5. Pricing One Period Returns

u'(crv1)
1=E — TR
T |:/8 U/(CT) 7'+].
» The term m, 1 = 3* (,(;“) is a stochastic discount factor.

> That equation can be understood as a restriction on the conditional moments of
returns and m;41.

> Applying the law of iterated expectations to the above equation, one gets the
unconditional moments restriction:
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8. Sequential trading.

> After considering the time-0 trading we consider sequential trading.

v

For this, the one-period formula we have derived earlier will be crucial.

> We will show that the allocations that prevail under complete markets, as
described by the zero-period trade in ARROW-DEBREU state contingent assets,
can be replicated with one-period securities.

> We will consider the household value function and write it as a function of a
crucial state variable.
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8. Sequential trading.

> We define as 'household wealth’ the value (at a point in time) of all the claims
'owned’ by a household net of its liabilities.

o0
Tis) =D ar(sT)ler(sT) = yi(sT)]-
T=t 5"'|sf
» Budget constraint at equality implies T§(s%) = 0
> Notice that at time t, given history s, we can ignore all the claims and liabilities
that do not correspond to that particularly history.

> At time t of history s, typically Ti(s?) # 0, but...
> .. feasibility implies

Z Ti(s®) =0, Vt,st.
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8. Sequential trading.

Debt limits.
» When considering the time-0 equilibrium we impose the intertemporal budget
constraint.
> In the case of sequential equilibria with infinitely lived consumers we need to avoid
"Ponzi schemes’.
> This is equivalent to assuming the consumer will have to repay her debts in any
state of the world.
» We will impose a natural debt limit, given, for every history, by the sum of future
endowments.
Z > ak(sT)yi(sT).
T= ts‘rlst
» Each consumer will not be able to promise to pay, for each history st more than

Ai(s?), which corresponds to zero consumption.
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8. Sequential trading.
Debt limits.

> Suppose our consumers are operating in a sequence of markets in
one-period-ahead state-contingent claims.

X At time t consumers trade on claims contingent on s;;1.
> Let 3}(s?) be claims brought into time t.

> Q:(se41|s?) is the price (at time t) of one unit of time t 4+ 1-consumption,
contingent on s; 1, when history has been st.

> Budget constraint:
~ift 5 t 6 ty « (st 3t
c(s') + Zat+1(5t+1>5 )Qe(se41]s") < y(s7) + a(s").
St+1

> Debt limits: . '
_5:?-1-1(5t+1) < Alt+1(5t+1)-

This is a borrowing constraint faced by each individual in each state of the world.
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8. Sequential trading.

Consumer Problem

> The Lagrangian for the consumer problem will be given by:

L=>>" {ﬁtU(E{Q(St))m(St)

t=0 st

(st) [y;'(sf) L) — (s — Y F (s sf)ét(smrsf)]

St+1

T Z §£(5t+17 s') {Aiﬂ(stﬂ) + 5£+1(5t+1)} }

St+1

for a given initial wealth 3(s).
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8. Sequential trading.
First Order Conditions.

> First Order Conditions w.r.t. ¢/(s*) and 3., (se41,5") :

B (E(s*))me(st) — mi(s') = 0.
*Ui(st)ét(swﬂst) + ;£(5t+17 St) + 77i(5t+1, St) =0.

» Because of the Inada conditions, the debt limit constraint will not be binding at
the optimum.

~i t t
= U(st+1,5") =0, Vt,s' spqq.

—ni(s*) Qe(Se41]st) + ni(se41, 5°) = 0.

48 /57



8. Sequential trading.
First Order Conditions.

B (C(s"))me(sF) — mi(s") = 0.
—11(s") Qe(sex1]s") + mi(se1,5°) = 0.
> Substituting the first equation in the second yields:
u' (S (s™)

Q:(set1lst) = 8 o (E(s5)

me(ser1lst), Vt, st seqa.
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8. Sequential trading.

Definition 8
—
A distribution of wealth is a vector 2 .(s?) = {3i(s*)}/_, such that Y, 3i(st) = 0.

Definition 9
A sequential-trading competitive equilibrium is an initial distribution of wealth
a0(s0), an allocation {¢'}!_,, and pricing kernels Q;(st11|s?) such that:

1. for all i, given ag(so) and the pricing kernels, the consumption allocation ¢' solves
household i consumption problem.

2. for all realizations of {s'}32, the households’ consumption allocation and implied
asset portfolios satisfy:
246 = 2wl

§ 3 1(set1,8%) =0.
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9. Equivalence of allocations under time-zero trading and
sequential trading.

> With an appropriate choice of pricing kernel, one can show that a competitive
equilibrium allocation of the complete markets model with time 0 trading is also a
sequential-trading competitive equilibrium allocation ...

> ..., provided that we properly choose the initial distribution of wealth 3p(sp).

> Remark: we must choose an initial distribution of wealth because it is not an
endogenous variable.
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9. Equivalence of allocations under time-zero trading and

sequential trading.
Pricing kernel choice

>
>

Consider the price q2(s?) in the ARROW-DEBREU equilibrium.
Consider the sequence of pricing kernels given by:

q19+1(5t+1) _ qt
q9(s?) e

Consider the ARROW-DEBREU equilibrium consumption allocation {ci(s¢)}.
Given the pricing kernels just defined, it follows that:

5U/[C£+1(5t+1)]ﬂ(5t+1|5t) q(t)+1(5t+1)
u[el(s9)] e
It follows that the ARROW-DEBREU time-0 trading allocation satisfies the Euler
equation (first order condition) for the sequential trading problem when the
pricing kernel are those defined.

6t(5t+1|5t) = (st+1).

= 6t(5t+1|5t)
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9. Equivalence of allocations under time-zero trading and

sequential trading.
Initial wealth distribution

> Sequential trading allocations are indexed by the initial wealth distribution.

> We therefore need to choose a wealth distribution that generates the
ARROW-DEBREU allocation.

P> We conjecture that the initial wealth distribution is the null vector.

» Using the intertemporal budget constraints we prove that the portfolio choices
induced imply the same sequence of consumption and that this is optimal.
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9. Equivalence of allocations under time-zero trading and
sequential trading.
Initial wealth distribution

» Suppose that at time t and history st
portfolio :

3 y1(see1,8°) = Thya (s }: > @ S)er(sT) = vi(sT)].

T=t+1 s7|st+1

, household i chooses the following asset

where the consumption sequence is the ARROW-DEBREU equilibrium one.
» The value of that portfolio is

251+1(5t+1a5t)9t(5t+1\5t) = Z Tt+1 t+1)qf+1(5t+1)

St+1 st+1|st
= Z > le(s s)az(s"). (1)
T=t+1s7|st
. 0fT 0 (t+1)
> Notice gtt1(s7)qgl, (s"+1) = q?zgt 31) T = ai(s), (T > ).
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9. Equivalence of allocations under time-zero trading and
sequential trading.

> Let's show that the portfolio sequence {5£+1(5t+1, st)} is affordable
> Take BC:

ci(s') + D ala(sern, sh) Qelserals) < yi(sh) +3y(s").

St+1
> At t =0, 3)(s0) = Th(s)
~——

=0

so that the BC in 0 writes

~i

co(s0) + > "3 (s1,50) Qo(sts0)

S1
~

= ¥§(s0) + 3p(s0) -
——

=0

3002 Celel(st)—yi(st)lal(st) from (1)
» From the intertemporal BC in the time-0 trading equilibrium

Yé(s0) — Z Z[ct — yi(s9)]q%(s*) = ¢(s0) and therefore

i
0
7=1 st

&(s°) = c(s”)-
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9. Equivalence of allocations under time-zero trading and
sequential trading.

> G5(s%) = c§(s%).

> Therefore, the proposed portfolio strategy attains the same consumption plan as
in the competitive equilibrium of the ARROW-DEBREU economy

> But is that the best choice for agents?

> Yes, as the natural debt limit precludes choosing a consumption plan with higher
utility.
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