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1. Time 0 versus Sequential Trading

▶ This chapter describes competitive equilibria for a pure exchange infinite horizon
economy with stochastic endowments.

▶ This economy is useful for studying risk sharing, asset pricing, and consumption.
▶ Two market structures:

× Arrow-Debreu structure with complete markets in dated contingent claims all
traded at time 0,

× sequential-trading structure with complete one-period Arrow securities

▶ These two imply different assets and timings of trades, but have identical
consumption allocation.
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2. Endowments and Preferences

We start by characterizing:

1. The physical (and stochastic) properties of the resources available to the agents.

2. Agents preferences.
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2. Endowments and Preferences
Histories

▶ We consider a stochastic event or state variable st ∈ S .
▶ Let’s define the history of events up to time t as:

st = {s0, s1, ..., st}

▶ The unconditional probability of observing state st in history st is

πt(s
t)

▶ Conditional probabilities, for history st conditional on history sτ , τ < t, are given
by:

πt(s
t |sτ )

▶ Note: we will not immediately assume a Markov structure.
× Markov structure = memoryless property of a stochastic process, which means that

its future evolution is independent of its history.
× While useful for some results, it is not necessary for others.

▶ Trade after observing s0, therefore π0(s0) = 1.
4 / 57



Endowments

▶ We assume the economy is populated by I agents, denoted by index i = 1, 2, ..., I .

▶ Each agent receives an endowment which is a function of the random history st :

y it (s
t).

▶ Each household will be associated with a consumption plan

ci = {c it(st)}∞t=0.
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2. Endowments and Preferences
Preferences

▶ Consumption plans will be ordered using the following function:

U(c i ) =
∞∑
t=0

∑
st

βtu[c it(s
t)]πt(s

t) = E0

∞∑
t=0

βtu[c it(s
t)].

▶ Regularity conditions on u[.].

× Increasing, concave and smooth.
× Inada condition.

lim
c↓0

u′(c) = +∞

▶ Consumers share probabilities (views of the world)
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2. Endowments and Preferences
Allocations

▶ All histories are fully observable, verifiable and contractable upon.

Definition 1

An allocation of resources is a collection of consumption plans C = {ci}Ii=1.

Definition 2

An allocation of resources is feasible if:∑
i

c it(s
t) ≤

∑
i

y it (s
t), ∀t and ∀st .

▶ Notice: we are not considering storage.
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3. Alternative Trading Arrangements

▶ We will consider two different trading arrangements.

▶ We will then show their equivalence.

1. We will first consider a situation where all trades happen at time 0.

× Agents will trade state and history contingent claims.
× Once the trade is done, markets close for subsequent periods.
× Contracts are enforced in subsequent periods and commitments honored.

2. We will then consider a sequential trading framework.

× In each period agents will trade one-period contingent claims.

▶ Those two trading arrangement

× share the same consumption allocations
× share the property that allocations depend only on aggregate resources at each date

and on a a time-invariant wealth distribution.
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3. Alternative Trading Arrangements

Figure 1: Time 0 Arrow-Debreu trades: all
possible histories are considered at time 0.

210 Equilibrium with Complete Markets
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Figure 8.3.1: The Arrow-Debreu commodity space for a

two-state Markov chain. At time 0, there are trades in time

t = 3 goods for each of the eight nodes that signify histories

that can possibly be reached starting from the node at time

0.

In this chapter we shall study two distinct trading arrangements that corre-

spond, respectively, to the two views of the economy in Figures 8.3.1 and 8.3.2.

One is what we shall call the Arrow-Debreu structure. Here markets meet at

time 0 to trade claims to consumption at all times t > 0 and that are contingent

on all possible histories up to t , st . In that economy, at time 0, households

trade claims on the time t consumption good at all nodes st . After time 0,

no further trades occur. The other economy has sequential trading of only one-

period-ahead state-contingent claims. Here trades occur at each date t ≥ 0.

Trades for history st+1 –contingent date t+1 goods occur only at the particular

date t history st that has been reached at t , as in Figure 8.3.2. Remarkably,

these two trading arrangements will support identical equilibrium allocations.

Those allocations share the notable property of being functions only of the ag-

gregate endowment realization. They depend neither on the specific history

The Arrow-Debreu commodity space for a two-state Markov
chain. At time 0, there are trades in time t = 3 goods for each
of the eight nodes that signify histories that can possibly be reached
starting from the node at time 0.

Figure 2: Sequential trades in 1-period Arrow
securities Alternative trading arrangements 211

t=1t=0 t=2 t=3

(1|0,0,1)

(0|0,0,1)

Figure 8.3.2: The commodity space with Arrow securities.

At date t = 2, there are trades in time 3 goods for only those

time t = 3 nodes that can be reached from the realized time

t = 2 history (0, 0, 1).

preceding the outcome for the aggregate endowment nor on the realization of

individual endowments.

8.3.1. History dependence

In principle, the situation of household i at time t might very well depend on the

history st . A natural measure of household i ’s luck in life is {yi
0(s0), yi

1(s
1), . . . ,

yi
t(s

t)} . This obviously depends on the history st . A question that will occupy

us in this chapter and in chapter 19 is whether, after trading, the household’s

consumption allocation at time t is history dependent or whether it depends

only on the current aggregate endowment. Remarkably, in the complete markets

models of this chapter, the consumption allocation at time t will depend only

on the aggregate endowment realization. The market incompleteness of chapter

17 and the information and enforcement frictions of chapter 19 will break that

result and put history dependence into equilibrium allocations.

The commodity space with Arrow securities. At date t = 2, there
are trades in time 3 goods for only those time t = 3 nodes that can
be reached from the realized time t=2 history (0,0,1).
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4. Pareto Problem

Definition 3

An allocation is said to be Pareto-optimal if any re-allocation that makes one
household strictly better off also makes one or more other households worse off.

Definition 4

An allocation is said to be efficient if it is Pareto-optimal.

▶ We can construct efficient allocations from a Pareto problem:
▶ A social planner maximizes the weighted average of individual utilities using some

arbitrary non-negative Pareto weights λi , i = 1, ..., I .

W =
I∑

i=1

λiU(c i ) subject to∑
i

c it(s
t) ≤

∑
i

y it (s
t), ∀t and ∀st .
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4. Pareto Problem

▶ Consider the Lagrangian for this problem:

L =
∞∑
t=0

∑
st

{
I∑

i=1

λiβ
tu(c it(s

t))πt(s
t) + θt(s

t)
I∑

i=1

[y it (s
t)− c it(s

t)]

}
where θt(s

t) are (non-negative) Lagrange multipliers associated to the feasibility
constraints relevant in each state and time.

▶ First order condition w.r.t. c it(s
t):

βtu′(c it(s
t))πt(s

t) = λ−1
i θt(s

t) ∀i , t, st .

▶ Considering the ratio of this condition to that for consumer 1:

u′(c it(s
t))

u′(c1t (s
t))

=
λ1

λi
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4. Pareto Problem
▶ Solving for c it(s

t):

c it(s
t) = u′−1(

λ1

λi
u′(c1t (s

t))). (⋆)

▶ Substituting in the feasibility constraint:∑
i

u′−1(
λ1

λi
u′(c1t (s

t))) =
∑
i

y it (s
t).︸ ︷︷ ︸

one equation, one unknown

(⋆⋆)

Proposition 1

An efficient allocation is a function of the realized aggregate endowment and depends
neither on the specific history leading up to that outcome nor on the realizations of
individual endowments.

c it(s
t) = c iτ (s

τ ) ∀ st and sτ such that
∑
j

y jt (s
t) =

∑
j

y jτ (s
τ ).
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4. Pareto Problem

▶ Solving for c it(s
t):

c it(s
t) = u′−1(

λ1

λi
u′(c1t (s

t))). (⋆)

▶ Substituting in the feasibility constraint:∑
i

u′−1(
λ1

λi
u′(c1t (s

t))) =
∑
i

y it (s
t).︸ ︷︷ ︸

one equation, one unknown

(⋆⋆)

▶ To solve for P.O. allocations, we will for each realization of history st :

× Solve (⋆⋆) for c1t (s
t)

× Solve (⋆) for all i ̸= 1 c it(s
t)
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4. Pareto Problem

Notice:

▶ Pareto weights can be normalized (only ratios matter) ⇝ we can impose∑
i λi = 1.

▶ Pareto weights are time invariant.

▶ Relative marginal utilities depend on Pareto weights only, so that they are time
invariant.

▶ Consumer’s i relative share of the aggregate endowment varies with his Pareto
weight λi .

▶ So far we have described the allocations, not the specific trades made to achieve
those allocations.
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5. Time-0 trading: Arrow-Debreu securities.

▶ Here we describe a particular market organisation that reaches as
Pareto-efficient allocation.

▶ At time zero consumers trade entitlements to state-contingent consumption
streams.

▶ The price of a security that delivers one unit of consumption at time t if the
history up to that point has been st is q0t (s

t).

▶ In other words, q0t (s
t) is the price at time 0 of time t consumption contingent on

history st , in terms of an abstract unit of account.

▶ The budget constraint for a consumer entering the time 0 market will then be:

∞∑
t=0

∑
st

q0t (s
t)c it(s

t) ≤
∞∑
t=0

∑
st

q0t (s
t)y it (s

t).

▶ Consumer i will maximize utility given this budget constraint.

▶ Notice: there is a single budget constraint because all trades occur at time 0.
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5. Time-0 trading: Arrow-Debreu securities.

▶ For a generic household i

maxU(c i ) =
∞∑
t=0

∑
st

βtu[c it(s
t)]πt(s

t)

s.t.
∞∑
t=0

∑
st

q0t (s
t)c it(s

t) ≤
∞∑
t=0

∑
st

q0t (s
t)y it (s

t) (µi )

▶ First order condition will be:

∂U(c i )

∂c it(s
t)

= µiq
0
t (s

t).

µi is the Lagrange multiplier associated with budget constraint.
▶ Given intertemporal separability of preferences,

∂U(c i )

∂c it(s
t)

= βtu′[c it(s
t)]πt(s

t) = µiq
0
t (s

t).
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5. Time-0 trading: Arrow-Debreu securities.

Definition 5

A price system is a sequence of functions {q0t (st)}∞t=0.

Definition 6

An allocation is a list of sequence of functions c i = {c it(st)}∞t=0.

Definition 7

A competitive equilibrium is a feasible allocation and a price system such that, given
the price system, the allocation solves each household’s problem.

17 / 57



5. Time-0 trading: Arrow-Debreu securities.

▶ Notice that:
βtu′[c it(s

t)]πt(s
t) = µiq

0
t (s

t)

implies:
u′[c it(s

t)]

u′[c jt (s
t)]

=
µi

µj
, ∀i , j

▶ An equilibrium, therefore, solves:

1. The aggregate feasibility constraint.
2. The individual budget constraint for all individuals.
3. The condition on the ratios of marginal utilities.
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5. Time-0 trading: Arrow-Debreu securities.

▶ Notice that one can solve the equation for the ratio of marginal utilities for c it(s
t)

as a function of:

1. consumption of individual 1;
2. the ratio of Lagrange multipliers of individuals i and 1

c it(s
t) = u′−1

{
u′[c1t (s

t)]
µi

µ1

}
▶ Substituting in the aggregate feasibility constraints gets :

∑
i

u′−1

{
u′[c1t (s

t)]
µi

µ1

}
=

∑
i

y it (s
t).

▶ This equation can be solved for c1t (s
t).

▶ Notice that the right-hand-side is the aggregate endowment.

19 / 57



5. Time-0 trading: Arrow-Debreu securities.

Proposition 2

The competitive equilibrium allocation is a function of the realized aggregate
endowment and does not depend on time t or on the specific history or on the cross
section distribution of endowments: c it(s

t) = c iτ (s̃
τ ) for all histories st and s̃τ such

that
∑

j y
j(st) =

∑
j y

j(s̃τ ).

▶ Remark:
{

µj

µ1

}I

j=2
and aggregate endowment in t are what determine the

distribution of consumption at date t.
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5. Time-0 trading: Arrow-Debreu securities.
Pricing functions.

▶ Having found the equilibrium, we can use expressions such has:

βtu′[c it(s
t)]πt(s

t) = µiq
0
t (s

t)

to determine the equilibrium price q0t (s
t).

▶ Notice that prices are stochastic processes.

▶ Price units are arbitrary so that we can for example normalize one price to unity.

▶ A possibility is to set q00(s0) = 1.

▶ This implies µi = u′[c i0(s0)].
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5. Time-0 trading: Arrow-Debreu securities.
Equilibrium optimality.

▶ An important property of the competitive equilibrium is that it is Pareto
optimal.

▶ This can be seen if set the Pareto weights in the Social Planner problem so that:

λi = 1/µi , ∀i

▶ θt(s
t) = q0t (s

t).

▶ The coincidence of competitive equilibria and Pareto optimality is behind the
First and Second fundamental theorems of welfare economics.
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5. Time-0 trading: Arrow-Debreu securities.
Equilibrium optimality.

Theorem 1

First Welfare Theorem: Any Competitive Equilibrium is Pareto optimal.

Theorem 2

Second Welfare Theorem: Under some regularity conditions, any Pareto optimal
allocation can be sustained as a competitive equilibrium.
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5. Time-0 trading: Arrow-Debreu securities.
Equilibrium computation.

To compute the equilibrium on can use the Negishi algorithm to determine µi/µ1.

1. Fix an arbitrary (positive) value for µ1. Guess some initial positive value for the
other µi . Compute:

c it(s
t) = u′−1

{
u′[c1t (s

t)]
µi

µ1

}
.

∑
i

u′−1

{
u′[c1t (s

t)]
µi

µ1

}
=

∑
i

y it (s
t).

2. Solve for equilibrium prices q0t (s
t):

q0t (s
t) = βtu′[c it(s

t)]πt(s
t)µ−1

i

3. Check the budget constraint for every i = 1, ..., I .
× For those i where ci is too high, raise µi .
× For those i where ci is too low, lower µi .

4. Iterate previous steps until convergence.
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5. Time-0 trading: Arrow-Debreu securities.
Equilibrium computation.

▶ In general, the computation of equilibrium is a difficult problem.

▶ Typically, the equilibrium prices depend on the wealth distribution (i.e. all the
individual endowment streams)

▶ There are some cases (particular preferences or endowment processes) where the
computation is simpler, as we do not need to iterate on Pareto weights.
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6. Simpler Computational Algorithm
6.1. Risk sharing

▶ The model we have described has important implications for risk sharing.

▶ Individuals with concave utility will want to smooth consumption over time.

▶ In the model we have studied, even without storage possibilities, smoothing is
possible if individual shocks are not perfectly correlated.

▶ Indeed we will consider examples in which individuals can smooth quite a bit.
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6. Simpler Computational Algorithm
6.1. Risk sharing

▶ Suppose utility is CRRA:

U(c) =
c1−γ − 1

1− γ
, γ > 0

▶ Then in the complete markets equilibrium:

[c it(s
t)]−γ

µi
=

[c jt (s
t)]−γ

µj
, ∀i , j

=⇒ c it(s
t) = c jt (s

t)

(
µi

µj

)− 1
γ

, ∀i , j

▶ Individual consumptions are perfectly correlated.
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6. Simpler Computational Algorithm
6.1. Risk sharing

▶ The model implies that the consumption of different agents varies in the same
proportion so that the ratio stays constant over time.

▶ There is extensive cross-period and cross-states risk sharing.

▶ The factor of proportionality is given by the ratio of multipliers µi/µj , or,
alternatively, by the ratio of Pareto weights in the social planner program.

▶ From the FOC of the social planner program, we can notice that the only thing
that determines individual consumption is aggregate shocks:

u′[c it(s
t)]λiβ

tπt(s
t) = [c it(s

t)]−γλiβ
tπt(s

t) = θt(s
t).
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6. Simpler Computational Algorithm
6.1. Risk sharing

▶ In this example, we can easily compute equilibrium prices. Using

c it(s
t) = c jt (s

t)

(
µi

µj

)− 1
γ

, ∀i , j

▶ and the price formula derived earlier

βtu′[c it(s
t)]πt(s

t) = µiq
0
t (s

t)

▶ we obtain
q0t (s

t) = µ−1
i α−γ

i βt(y t(s
t))−γπt(s

t)

where c it(s
t) = αiy t(s

t), y t(s
t) =

∑
j y

i
t (s

t), αi =

(∑
j

(µi
µj

) 1
γ

)−1

▶ We have one normalisation choice, which amount to setting µ−1
i α−γ

i for one i to
an arbitrary positive number.

▶ For example µ−1
1 α−γ

1 = 1
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6. Simpler Computational Algorithm
6.1. Risk sharing

▶ We then compute equilibrium as follows:

▶ Prices are obtained from

q0t (s
t) = βt(y t(s

t))−γπt(s
t)

▶ Using those prices and consumer’s i budget constraint

∞∑
t=0

∑
st

q0t (s
t)c it(s

t) =
∞∑
t=0

∑
st

q0t (s
t)y it (s

t),

▶ we obtain the consumption share αi as its share of total wealth evaluated at
equilibrium prices:

αi =

∑∞
t=0

∑
st q

0
t (s

t)y it (s
t)∑∞

t=0

∑
st q

0
t (s

t)y t(s
t)
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6. Simpler Computational Algorithm
6.1. Risk sharing

Empirical implications
▶ Using the Social planner FOC
▶ We have

u′[c it(s
t)]λiβ

tπt(s
t) = [c it(s

t)]−γλiβ
tπt(s

t) = θt(s
t)
[
= q0t (s

t)
]
.

▶ Taking logs:

−γ log(c it(s
t)) + log(λi ) + log(βtπt(s

t)) = log(θt(s
t)).

−γ log(c it(s
t)) + log(λi ) = log(θt(s

t))− t log(β)− log(πt(s
t)).

▶ Taking this equation at two different points in time (t and τ) and subtracting one
from the other:

−γ[log(c it(s
t))− log(c iτ (s

τ )] = log(θt(s
t)) + log(πt(s

t))− log(θτ (s
τ ))

− log(πτ (s
τ ))− (t − τ) log(β) = νt,τ .

▶ No index i in νt,τ .
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6. Simpler Computational Algorithm
6.1. Risk sharing

Empirical implications

▶ This equation gives an empirical prediction:

[log(c it(s
t))− log(c iτ (s

τ )] = −1

γ
νt,τ

▶ Note:

× Strong empirical test: individual consumption growth only depends on aggregate
growth.

× Townsend (1994) and others used this strategy explicitly.
× There are no residuals in this equation

▶ Measurement error can be added.
▶ Taste shocks.
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6. Simpler Computational Algorithm
6.2. Other examples

▶ There are other examples in Chapter 8 of Ljunqvist & Sargent’s book that
you have to work by yourself.

33 / 57



7. Primer on Asset pricing

▶ Many asset-pricing models assume complete markets and price an asset by
breaking it into a sequence of history-contingent claims, evaluating each
component of that sequence with the relevant “state price deflator” q0t (s

t), and
then adding up those values.

▶ The asset is viewed as redundant, in the sense that it offers a bundle of
history-contingent dated claims, each component of which has already been priced
by the market.
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7. Primer on Asset pricing
7.1. Pricing Redundant Assets

▶ Let {d(st)}∞t=0 be a stream of claims on time t, state st consumption, where
d(st) is a measurable function of st .

▶ The price of an asset paying the owner this stream must be

p00 =
∞∑
t=0

∑
st

q0t (s
t)d(st)

▶ This can be understood as an arbitrage equation.
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7. Primer on Asset pricing
7.2. Riskless Consol

▶ A riskless consol offers for sure one unit of consumption at each period, i.e.
dt(s

t) = 1 for all t and st .

▶ The price is

p00 =
∞∑
t=0

∑
st

q0t (s
t)
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7. Primer on Asset pricing
7.3. Riskless strips

▶ Consider a sequence of strips of returns on the riskless consol.

▶ The time-t strip is the return process dτ = 1 if τ = t ≥ 0, and 0 otherwise.

▶ The price of time-t strip at 0 is

p0t =
∑
st

q0t (s
t)
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7. Primer on Asset pricing
7.4. Tail assets

▶ Consider the stream of dividends {d(st)}t≥0

▶ For τ ≥ 1, suppose that we strip off the first τ − 1 periods of the dividend and
want to get the time-0 value of the dividend stream {d(st)}t≥τ .

▶ Let p0τ (s
τ ) be the time-0 price of an asset that entitles the dividend stream

{d(st)}t≥τ if history sτ is realized:

p0τ (s
τ ) =

∑
t≥τ

∑
{s̃t :s̃τ=sτ}

q0t (s̃
t)d(s̃t)

▶ Let us convert this price into units of time τ , state sτ by dividing by q0τ (s
τ ):

pττ (s
τ ) =

p0τ (s
τ )

q0τ (s
τ )

=
∑
t≥τ

∑
{s̃t :s̃τ=sτ}

q0t (s̃
t)

q0τ (s
τ )
d(s̃t)

▶ Notice that for all consumers i

qτt (s
t) =

q0t (s
t)

q0τ (s
τ )

=
βtu′[c it(s

t)]π(st)

βτu′[c iτ (s
τ )]π(sτ )

= βt−τ u
′[c it(s

t)]

u′[c iτ (s
τ )]

π(st |sτ ) (⋆)
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7. Primer on Asset pricing
7.4. Tail assets

▶ qτt (s
t) is the price of one unit of consumption delivered at time t, state st in

terms of the date-τ , state-sτ consumption good.

▶ The price at τ in history sτ for the tail asset is

pττ (s
τ ) =

∑
t≥τ

∑
{s̃t :s̃τ=sτ}

qτt (s̃
t)d(s̃t)

▶ This tail asset formula is useful if one wants to create in a model a time series of
equity prices: an equity purchased at time τ entitles the owner to the dividends
from time τ forward, and the price is given by the above formula.
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7. Primer on Asset pricing
7.4. Tail assets

qτt (s
t) = βt−τ u

′[c it(s
t)]

u′[c iτ (s
τ )]

π(st |sτ ) (⋆)

▶ We have shown that c it(s
t) are not history dependant.

▶ Then the relative price in (⋆) is not history dependent.

Proposition 3

The equilibrium price of date-t ≥ 0, state-st consumption good expressed in terms of
date τ (0 ≤ τ ≤ t), state sτ consumption good is not history dependent:

qτt (s
t) = qjt(s̃

k)

for j , k ≥ 0 such that t − τ = k − j and [st , st−1, . . . , sτ ] = [s̃k , s̃k−1, . . . , s̃j ].
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7. Primer on Asset pricing
7.5. Pricing One Period Returns

▶ The one-period version of equation (⋆) is

qττ+1(s
τ+1) = β

u′(c iτ+1)

u′(c iτ )
π(sτ+1|sτ )

▶ The RHS is the one-period pricing kernel at time τ .
▶ The price at time τ in state sτ of a claim to a random payoff ω(sτ+1) is given,

using the pricing kernel, by

pττ (s
τ ) =

∑
sτ+1

qττ+1(s
τ+1)ω(sτ+1)

= Eτ

[
β u′(cτ+1)

u′(cτ )
ω(sτ+1)

]
where superscripts i and dependence to sτ have been deleted.

▶ Let denote the one-period gross return on the asset by Rτ+1 = ω(sτ+1)/p
τ
τ (s

τ ).
Then, for any asset, the above equation implies

1 = Eτ

[
β
u′(cτ+1)

u′(cτ )
Rτ+1

]
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7. Primer on Asset pricing
7.5. Pricing One Period Returns

1 = Eτ

[
β
u′(cτ+1)

u′(cτ )
Rτ+1

]
▶ The term mτ+1 = β u′(cτ+1)

u′(cτ )
is a stochastic discount factor.

▶ That equation can be understood as a restriction on the conditional moments of
returns and mτ+1.

▶ Applying the law of iterated expectations to the above equation, one gets the
unconditional moments restriction:

1 = E

[
β
u′(cτ+1)

u′(cτ )
Rτ+1

]
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8. Sequential trading.

▶ After considering the time-0 trading we consider sequential trading.

▶ For this, the one-period formula we have derived earlier will be crucial.

▶ We will show that the allocations that prevail under complete markets, as
described by the zero-period trade in Arrow-Debreu state contingent assets,
can be replicated with one-period securities.

▶ We will consider the household value function and write it as a function of a
crucial state variable.
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8. Sequential trading.

▶ We define as ’household wealth’ the value (at a point in time) of all the claims
’owned’ by a household net of its liabilities.

Υi
t(s

t) =
∞∑
τ=t

∑
sτ |st

qtτ (s
τ )[c iτ (s

τ )− y iτ (s
τ )].

▶ Budget constraint at equality implies Υi
0(s

0) = 0

▶ Notice that at time t, given history st , we can ignore all the claims and liabilities
that do not correspond to that particularly history.

▶ At time t of history st , typically Υi
t(s

t) ̸= 0, but...

▶ ... feasibility implies
I∑

i=1

Υi
t(s

t) = 0, ∀t, st .
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8. Sequential trading.
Debt limits.

▶ When considering the time-0 equilibrium we impose the intertemporal budget
constraint.

▶ In the case of sequential equilibria with infinitely lived consumers we need to avoid
’Ponzi schemes’.

▶ This is equivalent to assuming the consumer will have to repay her debts in any
state of the world.

▶ We will impose a natural debt limit, given, for every history, by the sum of future
endowments.

Ai
t(s

t) =
∞∑
τ=t

∑
sτ |st

qtτ (s
τ )y iτ (s

τ ).

▶ Each consumer will not be able to promise to pay, for each history st more than
Ai
t(s

t), which corresponds to zero consumption.
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8. Sequential trading.
Debt limits.

▶ Suppose our consumers are operating in a sequence of markets in
one-period-ahead state-contingent claims.

× At time t consumers trade on claims contingent on st+1.

▶ Let ãit(s
t) be claims brought into time t.

▶ Q̃t(st+1|st) is the price (at time t) of one unit of time t + 1–consumption,
contingent on st+1, when history has been st .

▶ Budget constraint:

c̃ it(s
t) +

∑
st+1

ãit+1(st+1, s
t)Q̃t(st+1|st) ≤ y it (s

t) + ãit(s
t).

▶ Debt limits:
−ãit+1(s

t+1) ≤ Ai
t+1(s

t+1).

This is a borrowing constraint faced by each individual in each state of the world.
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8. Sequential trading.
Consumer Problem

▶ The Lagrangian for the consumer problem will be given by:

Li =
∞∑
t=0

∑
st

{
βtu(c̃ it(s

t))πt(s
t)

+ ηit(s
t)

[
y it (s

t) + ãit(s
t)− c̃ it(s

t)−
∑
st+1

ãit+1(st+1, s
t)Q̃t(st+1|st)

]

+
∑
st+1

ν̃ it(st+1, s
t)

[
Ai
t+1(s

t+1) + ãit+1(s
t+1)

]}

for a given initial wealth ãi0(s0).
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8. Sequential trading.
First Order Conditions.

▶ First Order Conditions w.r.t. c̃ it(s
t) and ãit+1(st+1, s

t) :

βtu′(c̃ it(s
t))πt(s

t)− ηit(s
t) = 0.

−ηit(s
t)Q̃t(st+1|st) + ν̃ it(st+1, s

t) + ηit(st+1, s
t) = 0.

▶ Because of the Inada conditions, the debt limit constraint will not be binding at
the optimum.

=⇒ ν̃ it(st+1, s
t) = 0, ∀t, st , st+1.

−ηit(s
t)Q̃t(st+1|st) + ηit(st+1, s

t) = 0.

48 / 57



8. Sequential trading.
First Order Conditions.

▶
βtu′(c̃ it(s

t))πt(s
t)− ηit(s

t) = 0.

−ηit(s
t)Q̃t(st+1|st) + ηit(st+1, s

t) = 0.

▶ Substituting the first equation in the second yields:

Q̃t(st+1|st) = β
u′(c̃ it+1(s

t+1))

u′(c̃ it(s
t))

πt(st+1|st), ∀t, st , st+1.
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8. Sequential trading.

Definition 8

A distribution of wealth is a vector
−→
ã t(s

t) = {ãit(st)}Ii=1 such that
∑

i ã
i
t(s

t) = 0.

Definition 9

A sequential-trading competitive equilibrium is an initial distribution of wealth−→
ã0(s0), an allocation {c̃ i}Ii=1, and pricing kernels Q̃t(st+1|st) such that:

1. for all i , given ã0(s0) and the pricing kernels, the consumption allocation c̃ i solves
household i consumption problem.

2. for all realizations of {st}∞t=0 the households’ consumption allocation and implied
asset portfolios satisfy: ∑

i

c̃ it(s
t) =

∑
i

y it (s
t),

∑
i

ãit+1(st+1, s
t) = 0.
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9. Equivalence of allocations under time-zero trading and
sequential trading.

▶ With an appropriate choice of pricing kernel, one can show that a competitive
equilibrium allocation of the complete markets model with time 0 trading is also a
sequential-trading competitive equilibrium allocation ...

▶ ..., provided that we properly choose the initial distribution of wealth ã0(s0).

▶ Remark: we must choose an initial distribution of wealth because it is not an
endogenous variable.
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9. Equivalence of allocations under time-zero trading and
sequential trading.
Pricing kernel choice

▶ Consider the price q0t (s
t) in the Arrow-Debreu equilibrium.

▶ Consider the sequence of pricing kernels given by:

Q̃t(st+1|st) =
q0t+1(s

t+1)

q0t (s
t)

= qtt+1(s
t+1).

▶ Consider the Arrow-Debreu equilibrium consumption allocation {c it(st)}.
▶ Given the pricing kernels just defined, it follows that:

βu′[c it+1(s
t+1)]π(st+1|st)

u′[c it(s
t)]

=
q0t+1(s

t+1)

q0t (s
t)

= Q̃t(st+1|st)

▶ It follows that the Arrow-Debreu time-0 trading allocation satisfies the Euler
equation (first order condition) for the sequential trading problem when the
pricing kernel are those defined.
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9. Equivalence of allocations under time-zero trading and
sequential trading.
Initial wealth distribution

▶ Sequential trading allocations are indexed by the initial wealth distribution.

▶ We therefore need to choose a wealth distribution that generates the
Arrow-Debreu allocation.

▶ We conjecture that the initial wealth distribution is the null vector.

▶ Using the intertemporal budget constraints we prove that the portfolio choices
induced imply the same sequence of consumption and that this is optimal.
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9. Equivalence of allocations under time-zero trading and
sequential trading.
Initial wealth distribution

▶ Suppose that at time t and history st , household i chooses the following asset
portfolio :

ãit+1(st+1, s
t) = Υi

t+1(s
t+1) =

∞∑
τ=t+1

∑
sτ |st+1

qt+1
τ (sτ )[c iτ (s

τ )− y iτ (s
τ )].

where the consumption sequence is the Arrow-Debreu equilibrium one.
▶ The value of that portfolio is∑

st+1

ãit+1(st+1, s
t)Q̃t(st+1|st) =

∑
st+1|st

Υi
t+1(s

t+1)qtt+1(s
t+1)

=
∞∑

τ=t+1

∑
sτ |st

[c iτ (s
τ )− y iτ (s

τ )]qtτ (s
τ ). (†)

▶ Notice qt+1
τ (sτ )qtt+1(s

t+1) = q0τ (s
τ )

q0t+1(s
t+1)

q0t+1(s
t+1)

q0t (s
t)

= qtτ (s
τ ), (τ > t).
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9. Equivalence of allocations under time-zero trading and
sequential trading.

▶ Let’s show that the portfolio sequence
{
ãit+1(st+1, s

t)
}
is affordable

▶ Take BC:

c̃ it(s
t) +

∑
st+1

ãit+1(st+1, s
t)Q̃t(st+1|st) ≤ y it (s

t) + ãit(s
t).

▶ At t = 0, ãi0(s0) = Υi
0(s0)︸ ︷︷ ︸
=0

so that the BC in 0 writes

c̃ i0(s0) +
∑
s1

ãi1(s1, s0)Q̃0(s1|s0)︸ ︷︷ ︸∑∞
τ=1

∑
st [c

i
t(s

t)−y i
t (s

t)]q0t (s
t) from (†)

= y i0(s0) + ãi0(s0)︸ ︷︷ ︸
=0

.

▶ From the intertemporal BC in the time-0 trading equilibrium,

y i0(s0)−
∞∑
τ=1

∑
st

[c it(s
t)− y it (s

t)]q0t (s
t) = c i0(s0) and therefore c̃ i0(s

0) = c i0(s
0).
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9. Equivalence of allocations under time-zero trading and
sequential trading.

▶ c̃ i0(s
0) = c i0(s

0).

▶ Therefore, the proposed portfolio strategy attains the same consumption plan as
in the competitive equilibrium of the Arrow-Debreu economy

▶ But is that the best choice for agents?

▶ Yes, as the natural debt limit precludes choosing a consumption plan with higher
utility.
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