2023-2024 - Econ 0107 - Macroeconomics I

Lecture 2 : Overlapping Generations (OLG) Models

(Chapter 9 in LJUNQVIST & SARGENT 4th edition)

Franck Portier F.Portier@UCL.ac.uk

University College London

Version 1.1 09/10/2023 Changes from version 1.0 are in red

1. Endowment and Preference

- Agents : $i = 0, 1, ..., +\infty$
- \blacktriangleright *i* is the period of birth
- Agents live for two periods
- ► $U^{i}(c^{i}) = u(c^{i}_{i}) + u(c^{i}_{i+1})$
- ► $U^0(c^0) = u(c_1^0)$
- ▶ Endowments $(y_i^i, y_{i+1}^i) \in \mathbb{R}^{+\star}$, $y_t^i = 0$ if $t \neq i, i+1$
- Deterministic economy
- Perishable good
- ▶ The economy starts in period 1

2. Time-0 Trading

- ▶ A special case (preferences, endowments) of the previous lecture.
- Clearing house at time 0 that posts prices and, at those prices, compiles aggregate demand and supply for goods in different periods.

Definition 1 (Equilibrium price vector)

An equilibrium price vector makes markets for all periods $t \ge 2$ clear, but there may be excess supply in period 1

- Excess supply in period 1 is possible because it can be given to the old without affecting equilibrium prices.
- ▶ Reason is that then old of period 1 consume all what they are given

2. Time-0 Trading

▶ Prices q_t^0

Hh budget constraint (BC)

$$\sum_{t=1}^\infty q_t^0 c_t^i \leq \sum_{t=1}^\infty q_t^0 y_t^i$$

with Lagrange multiplier μ^i .

► FOC are

$$\begin{array}{rcl} \mu^{i} q_{i}^{0} & = & u'(c_{i}^{i}) \\ \mu^{i} q_{i+1}^{0} & = & u'(c_{i+1}^{i}) \\ c_{t}^{i} & = & 0 \quad \text{if} \quad t \neq i, i+1 \end{array}$$

► Feasibility

or equivalently

$$c_i^i + c_i^{i-1} \le y_i^i + y_i^{i-1}$$
 (2.1.)

 $c_t^t + c_t^{t-1} \leq y_t^t + y_t^{t-1}$

Definition 2 (Stationary allocation)

An allocation is stationary if $c_i^i = c_y$ and $c_{i+1}^i = c_o \ \forall i > 0$.

▶ Note that
$$c_1^0 = c_o$$
 is not required.

2.1. Example Equilibria

- ► Assumption: $y_i^i = 1 \varepsilon$, $y_{i+1}^i = \varepsilon$, $y_t^i = 0$ otherwise
- $\blacktriangleright \ \varepsilon \in [0,1/2]:$ more endowment received when young
- Many equilibria
- Look at the two stationary ones that we will guess and verify.
- ▶ H and L equilibrium (High and Low interest rate)

2.1. Example Equilibria H stationary equilibrium

▶ Guess
$$q_t^0 = 1 \ \forall t, c_i^i = c_{i+1}^i = 1/2$$
, $c_1^0 = \varepsilon$

- Check:
 - \times Feasible for t > 1
 - \times Feasible for t = 1
 - $\times~$ FOC is satisfied

$$rac{u'(c_i^i)}{u'(c_{i+1}^i)} = rac{q_i^0}{q_{i+1}^0}$$

Notes :

- \times $\,$ a lot of intergenerational trade
- imes some goods are wasted in period 1 (but that is an equilibrium outcome)
- $\times \quad \frac{q_{i+1}^0}{q_i^0} = \alpha_i = \frac{1}{1 + r_{i,i+1}} \rightsquigarrow \frac{q_{i+1}^0}{q_i^0} = 1 \text{ corresponds to } r_{i,i+1} = 0 \rightsquigarrow \text{ High interest rate (compared to the other stationary equilibrium)}$

2.1. Example Equilibria L stationary equilibrium

• Guess
$$c_i^i = y_i^i \ \forall i, \ \frac{q_{i+1}^0}{q_i^0} = \frac{u'(\varepsilon)}{u'(1-\varepsilon)} = \alpha > 1$$

Check:

- imes Feasible for $t\geq 1$
- \times Feasible for t = 0
- $\times~$ FOC is satisfied
- ► Notes :
 - \times prices prevent any intergenerational trade \rightsquigarrow autarky

 $\times \quad \frac{q_{i+1}^0}{q_i^0} = \frac{1}{1 + r_{i,i+1}} > 1 \rightsquigarrow r_{i,i+1} < 0 \rightsquigarrow \text{Low interest rate (compared to the other stationary equilibrium)}$

2.2. Relation with Welfare Theorems

- ▶ None of those two stationary equilibria are PARETO optimal
- \blacktriangleright The H equilibrium allocation is wasting some goods in period 1
- There is room to set up a giveaway program to the initial old that makes them better off and costs subsequent generations nothing.
- In H equilibrium every generation after the initial old one is better off and no generation is worse off than in L equilibrium .
- ▶ L Equilibrium is not PARETO optimal because it is dominated by H equilibrium.
- Note that H and L fail to satisfy one of the assumptions needed to deliver the first fundamental theorem of welfare economics.
- That condition is the assumption that the value of the aggregate endowment at the equilibrium prices is finite.
- ► If horizon was finite, equilibrium H would not exist and L would be PARETO optimal.

2.3. Non Stationary Equilibria

Definition 3 (Offer curve)

The household's offer curve is the locus of (c_i^i, c_{i+1}^i) that solves max $U(c^i)$ s.t. the BC

$$c_i^i + \alpha_i c_{i+1}^i \le y_i^i + \alpha_i y_{i+1}^i$$

for $\alpha_i \in \mathbb{R}^{+\star}$

Recall that

$$\alpha_i = rac{q_{i+1}^0}{q_i^0} = rac{1}{R_{i,i+1}} = rac{1}{1+r_{i,i+1}}$$

► The offer curve solves:

$$\rightsquigarrow \psi(c_i^i, c_{i+1}^i) = 0$$

2.3. Non Stationary Equilibria The Offer Curve

2.3. Non Stationary Equilibria The Offer Curve with $u = \log$ and $\varepsilon = .1$

One can construct a non-stationary equilibrium using the offer curve, i.e. using the recursion:

$$\psi(c_i^i, c_{i+1}^i) = 0$$

$$c_i^i + c_i^{i-1} = y_i^i + y_i^{i-1}$$

2.4. Computing Equilibria Example 1

- 1. Choose c_1^1 in $[c_y^H, c_y^L]$ (arbitrarily)
- 2. Use feasibility to find the maximum c_1^0 possible
- 3. Use offer curve to find c_2^1 (and α_1) s.t. (c_1^1, c_2^1) maximises U^1 when prices are α_1 .
- 4. From c_2^1 , use feasibility to find c_2^2
- 5. then repeat steps 3 to 4.
- Note that allocations converge towards L

2.4. Computing Equilibria Example 1

2.4. Computing Equilibria Example 2: Endowment at $+\infty$

- Assume that the initial old has y₁⁰ = ε in period 0 and "y_∞⁰ = δ = 1 − ε in period is +∞"
- More formally, wealth of the initial old is

$$egin{array}{rcl} q_1^0 \mathcal{W}^0 &=& q_1^0 \mathcal{Y}_1^0 + \lim_{t
ightarrow\infty} q_t^0 \mathcal{Y}_t^0 \ &=& q_1^0 arepsilon + \delta \lim_{t
ightarrow\infty} q_t^0 \end{array}$$

- ▶ At the L equilibrium, $rac{q_t^0}{q_{t-1}^0} = lpha > 1 \rightsquigarrow q_t^0 = lpha^t q_1^0$
- Therore, $W^0 = \varepsilon + \delta \lim_{t \to \infty} \alpha^t \to +\infty$
- ► The initial old has an infinite wealth in period 1 → will demand infinite consumption → not an equilibrium.
- There is therefore only the H stationary equilibrium

2.4. Computing Equilibria Example 3: Lucas tree

• Assume that the initial old has a Lucas tree, that pays d each period.

• BC of the initial old :
$$q_1^0 c_1^0 = d \sum_{t=1}^{\infty} q_t^0 + q_1^0 y_1^0$$

- \blacktriangleright Same offer curve, but the feasibility condition is shifted up by d
- With a Lucas tree, the only stationary equilibria is H (infinite wealth of the initial old at L because the interest rate is too low.
- $\alpha < 1 \ (R > 1)$ at the H stationary eq.
- Note also that we can rule out all the non-stationary candidates as they converge to L
- ► The only equilibrium is the stationary equilibrium H.

2.4. Computing Equilibria Example 3: Lucas tree

2.4. Computing Equilibria Example 4: Government expenditures

► Feasibility becomes

$$c_i^i + c_i^{i-1} + g = y_i^i + y_i^{i-1}$$

- Now there are two stationary equilibria, with both low interest rate ($\alpha > 1$)
- Low interest rate equilibria cannot be ruled out as previously.

2.4. Computing Equilibria Example 4: Government expenditures

2.4. Computing Equilibria Example 5: log preferences

Offer curve:

$$\begin{aligned} \boldsymbol{c}_{i}^{l} + \alpha_{i}\boldsymbol{c}_{i+1}^{l} &= \boldsymbol{y}_{i}^{l} + \alpha_{i}\boldsymbol{y}_{i+1}^{l} = 1 - \varepsilon + \alpha_{i}\varepsilon \\ \frac{\boldsymbol{c}_{i}^{l}}{\boldsymbol{c}_{i+1}^{l}} &= \alpha_{i} \end{aligned}$$

which gives

$$egin{array}{rcl} c_i^i &=& rac{1}{2}igg(1-arepsilon+lpha_iarepsilonigg) \ c_{i+1}^i &=& rac{c_i^i}{lpha_i} \end{array}$$

2.4. Computing Equilibria Example 5: log preferences

Plug in feasibility, which writes

$$c_{i}^{i} + c_{i}^{i-1} = 1$$

to obtain the equilibrium price recursion

$$\alpha_i = \frac{1}{\varepsilon} - \frac{\frac{1}{\varepsilon} - 1}{\alpha_{i-1}}$$

▶ We have two stat. eq. $\alpha = 1$ and $\alpha = \frac{1 - \varepsilon}{\varepsilon} > 1$ because $\varepsilon < .5$

3. Sequential Trading

- Now trade takes place every period
- No IOUs, as agents of the same generation are identical, and agents of two different generations do not meet in two consecutive periods.
- ▶ We add a durable asset (fiat money, gov bonds, Lucas tree)

4. Money

- ▶ Based on SAMUELSON [1958]
- Same model than before, but in t = 1, old are endowed with M > 0 units of intrinsically worthless currency.
- \triangleright P_t is the price on 1 u of good in term of the currency
- ▶ $1/P_t$ is the price of money (in term of good)
- From $i \ge 1$ onwards, the young buys m_i^i units of money from the old
- ▶ The old sells the currency to the young against goods

4. Money

▶ BC of a young born in $i \ge 1$:

$$egin{array}{rcl} c_i^i+rac{m_i^i}{P_i}&\leq y_i^i\ c_{i+1}^i&\leq rac{m_i^i}{P_{i+1}}+y_{i+1}^i\ m_i^i\geq 0 \end{array}$$

▶ If $m_i^i \ge 0$, the we have an intertemporal BC

$$c_{i}^{i} + c_{i+1}^{i} \left(\frac{P_{i+1}}{P_{i}} \right) \le y_{i}^{i} + y_{i+1}^{i} \left(\frac{P_{i+1}}{P_{i}} \right)$$
 (4.4)

Note that with $\frac{P_{i+1}}{P_i} = \alpha_i = \frac{q_{i+1}^0}{q_i^0}$, we have the same IBC than (2.1.) (in the date-0 trading model)

4. Money

Definition 4 (Nominal price sequence)

A nominal price sequence is a positive sequence $\{P_i\}_{i\geq 1}$

Definition 5 (Monetary equilibrium)

An equilibrium with valued fiat money (monetary equilibrium) is a feasible allocation and a nominal price sequence with $P_i < \infty$ for all i

▶ Remark: if $P_t \to \infty$, then $1/P_t \to 0$: the price of money is zero, i.e. money is not valued \rightsquigarrow non-monetary equilibrium (autarky)

4.1. Computing more equilibria with valued fiat money

Household optimal decision is sumarized by

$$y_i^i - c_i^i = s(\alpha_i, y_i^i, y_{i+1}^i)$$

Equilibrium condition is

with

$$\underbrace{\frac{M}{P_{i}}}_{\text{real dissaving of gen. }i-1} = \underbrace{s(\alpha_{i}, y_{i}^{i}, y_{i+1}^{i})}_{\text{real saving of gen. }i}$$
$$\alpha_{i} = \frac{P_{i+1}}{P_{i}}$$

 \rightarrow we have a difference equation in P_i , P_{i+1} that we need to solve for $\{P_i\}_{i=1}^{\infty}$

4.1. Computing more equilibria with valued fiat money Example: $u = \log c$, endowments (ω_1, ω_2) , $\omega_1 > \omega_2$

Max log
$$c_i^i + \log c_{i+1}^i$$

s.t. $c_i^i + \alpha_i c_{i+1}^i \leq \omega_1 + \alpha_i \omega_2$ (λ^i)
FOC: $\frac{1}{c_i^i} = \lambda^i$ and $\frac{1}{c_{i+1}^i} = \alpha_i \lambda^i \Rightarrow c_i^i = \alpha_i c_{i+1}^i$
Plug in the BC: $2c_i^i = y_i^i + \alpha_i y_{i+1}^i$
Compute savings: $s(\alpha_i, \omega_1, \omega_2) = y_i^i - c_i^i = \frac{1}{2}(\omega_1 - \frac{\alpha_i}{\frac{P_{i+1}}{P_i}}, \omega_2)$
Equilibrium: $\frac{M}{P_i} = \frac{1}{2}(\omega_1 - \alpha_i \omega_2) \Rightarrow$
 $P_i = \frac{2M}{\omega_1} + \underbrace{\frac{\omega_2}{\omega_1}}_{<1} P_{i+1}$

4.1. Computing more equilibria with valued fiat money Example: $u = \log c$, endowments (ω_1, ω_2) , $\omega_1 > \omega_2$

$$P_i = \frac{2M}{\omega_1} + \underbrace{\frac{\omega_2}{\omega_1}}_{<1} P_{i+1}$$

► Solve forward:

$$P_{i} = \frac{2M}{\omega_{1}} + \frac{\omega_{2}}{\omega_{1}} \left(\frac{2M}{\omega_{1}} + \frac{\omega_{2}}{\omega_{1}}P_{i+2}\right)$$

$$= \cdots$$

$$= \frac{2M/\omega_{1}}{1 - \omega_{2}/\omega_{1}} + \underbrace{\lim_{T \to \infty} \left(\frac{\omega_{2}}{\omega_{1}}\right)^{T}P_{T}}_{0 \text{ at stationary monetary equilibrium}}$$

• Therefore in stationary equilibrium $P_i = \frac{2M}{\omega_1 - \omega_2}$

4.2 Equivalence of equilibria

▶ Let's be in the case where endowments are $(1 - \varepsilon, \varepsilon)$, $\varepsilon < 1/2$

Proposition 1 (Time-0 trading and sequential trading)

Let \overline{c}^i denote a competitive equilibrium with time-0 trading, and suppose it satisfies $\overline{c}^i_i < y^i_i$ (positive savings), then \exists an equilibrium with sequential trading of the monetary economy with $c^i_i = \overline{c}^i_i$, $c^i_{i+1} = \overline{c}^i_{i+1} \ \forall i \ge 1$

4.2 Equivalence of equilibria Proof

• Compute $\alpha_i = \frac{q_{i+1}^0}{q_i^0}$ ▶ Set $m_i^i = M$ Derive P_1 from $\frac{M}{P_1} =$ $y_1^1 - \overline{c}_1^1$ if positive, then $P_1 > 0$ and unique • (note that only $\frac{M}{P_1}$ matters, not M and P_1 separately) • Construct $\{P_i\}_{i=1}^{\infty}$ using $P_{i+1} = \alpha_i P_i$ Allocate to period-0 old: $c_1^0 = y_1^0 + \frac{M}{P_1} = \underbrace{y_1^0}_{1} + \underbrace{y_1^1 - \overline{c}_1^1}_{1}$

4.2 Equivalence of equilibria

Proposition 2 (Sequential trading and time-0 trading)

Let \overline{c}^i be an equilibrium for the sequential trading monetary economy. There is a time-0 trading economy with the same allocations provided that some transfers are made to the old of period 1

Proof: Do transfers such that

$$c_1^0 = y_1^0 + \underbrace{(y_1^1 - \overline{c}_1^1)}_{transfers}$$

• Construct $\frac{q_{i+1}^0}{q_i^0} = \alpha_i = \frac{P_{i+1}}{P_1} \rightsquigarrow$ with these prices q^0 , $c^i = \overline{c}^i$ is a time-0 trading equilibrium.

5. Deficit finance

- Assume sequential trading, N agents
- $(y_i^i, y_{i+1}^i) = (\omega_1, \omega_2), \ \omega_1 > \omega_2$
- ► Taxes (τ₁, τ₂)
- ► Government:

$$M_t - M_{t-1} = P_t \underbrace{(g - \tau_1 - \tau_2)}_{\text{deficit } d} \tag{(\star)}$$

▶ Note: if " $P_t = +\infty$ " (non monetary equilibrium), then $g = \tau_1 + \tau_2$

• for generations $i \ge 1$:

$$\max \quad u(\omega_1 - \tau_1 - s) + u(\omega_2 - \tau_2 + R_t s)$$

• with
$$R_t = \frac{P_t}{P_{t+1}} \rightsquigarrow$$
 solution: $s_t = f(R_t)$

5. Deficit finance Definition

Definition 6 (Equilibrium with valued fiat money)

An equilibrium with valued fiat money is a pair of sequences $\{M_t, P_t\}$ such that

- 1. given $\{P_t\}$, $\frac{M_t}{P_t} = f(R_t)$,
- 2. $R_t = P_t / P_{t+1}$,
- 3. The gvt. BC is satisfied.

5. Deficit finance

Computation of the equilibrium

$$f(R_t) = \frac{M_t}{P_t} \iff f(R_t) = \frac{M_{t-1}}{P_t} + \frac{M_t - M_{t-1}}{P_t}$$
savings of the young
dissavings of the old
deficit $d = \pi - \pi_t - \pi_t$ (dissaving of the mut) (real value of currency printing)

• deficit $d = g - \tau_1 - \tau_2$ (dissaving of the gvt) (real value of currency printing)

► Gvt. BC:

$$\begin{cases} \frac{M_t}{P_t} = \frac{M_{t-1}}{P_{t-1}} \times \frac{P_{t-1}}{P_t} + d \quad \forall t \ge 2 \\ \\ \frac{M_1}{P_1} = \frac{M_0}{P_1} + d \end{cases}$$

5. Deficit finance Computation of the equilibrium

Gvt. BC:

$$\begin{cases}
\frac{M_t}{P_t} = \frac{M_{t-1}}{P_{t-1}} \times \frac{P_{t-1}}{P_t} + d \quad \forall t \ge 2 \\
\frac{M_1}{P_1} = \frac{M_0}{P_1} + d
\end{cases}$$
Using $\frac{M_t}{P_t} = f(R_t)$:

$$\begin{cases}
f(R_t) = f(R_{t-1}) \times R_{t-1} + d \quad \forall t \ge 2 \\
f(R_1) = \frac{M_0}{P_1} + d
\end{cases}$$

5. Deficit finance Computation of the equilibrium

▶ This is a difference equation in R_t that we can solve for a given $\frac{M_0}{P_1}$

•
$$\frac{M_0}{P_1}$$
 = "how much is given to the period 1 old"
• Note: Only $\frac{M_0}{P_1}$ matters (not M_0 and P_1 separately)

5.1. Stationary state and the LAFFER curve

► Steady state:

5.1. Stationary state and the ${\rm LAFFER}$ curve ${\rm Steady\ state}$

$$f(R) = f(R) imes R + d \iff$$

and

$$f(R) = \frac{M_0}{P_1} + d$$

5.1. Stationary state and the ${\rm LAFFER}$ curve Inflation tax

► We have

$$\frac{M_t}{P_t}(1-R) = d$$

Note that

$$R_t = \frac{P_t}{P_{t+1}} = \frac{1}{1 + \pi_{t+1}}$$

whith π_{t+1} is the inflation rate.

► Inflation tax:

$$\underbrace{1-R_t}_{\text{tax rate on }} = 1 - \frac{1}{1+\pi_{t+1}} = \frac{\pi_{t+1}}{1+\pi_{t+1}} \approx \underbrace{\pi_{t+1}}_{\text{inflation rate}}$$

5.1. Stationary state and the LAFFER curve With $u(c) = \log(c)$, $f(R_t) = \frac{\omega_1 - \tau_1}{2} - \frac{\omega_2 - \tau_2}{2R_t}$

- ▶ Take a model with gvt. deficit (No taxes $+ \{g_t\}$)
- ► There exist three equivalent structures:
 - 1. sequential trading + fiat currency
 - 2. sequential trading + gvt. indexed bonds
 - 3. time-0 trading with ARROW-DEBREU securities

6. Equivalent setups6.1. Sequential trading + fiat currency

Definition 7 (Sequential trading + fiat currency equilibrium)

An equilibrium is a sequence $\{M_t, P_t\}_{t=1}^{+\infty}$ with $0 < P_t < +\infty$, $M_t > 0$ such that 1. given $\{P_t\}$, $\{M_t\}$ satisfies

$$M_t = Argmax_{\widetilde{M}} \quad u\left(y_t^t - \frac{\widetilde{M}}{P_t}\right) + u\left(y_{t+1}^t + \frac{\widetilde{M}}{P_{t+1}}\right)$$

2. Gvt. BC holds for M_0 given

$$M_t - M_{t-1} = P_t g_t$$

6.2. Sequential trading + gvt. indexed bonds

- No money
- We introduce bonds
- ▶ B_t : sold by the gvt. to young of period t (1 unit of bond for $\frac{1}{R_t}$ units of good in t, each unit of bond pays 1 unit of good in t + 1).
- ▶ B₁: endowment of the old of period 1, pays 1 unit of good per unit of bond in period 1

6. Equivalent setups6.2. Sequential trading + gvt. indexed bonds

Definition 8 (Sequential trading + gvt. indexed bonds equilibrium)

An equilibrium with bonds financed government deficits is a sequence $\{B_{t+1}, R_t\}_{t=1}^{+\infty}$ such that

1. given $\{R_t\}$, $\{B_{t+1}\}$ satisfies

$$B_{t+1} = Argmax_{\widetilde{B}} \quad u\left(y_t^t - rac{\widetilde{B}}{R_t}
ight) + u\left(y_{t+1}^t + \widetilde{B}
ight)$$

2. Gvt. BC holds for B_1 given

$$\frac{B_{t+1}}{R_t} = B_t + g_t$$

6.2. Sequential trading + gvt. indexed bonds

Proposition 3 (Equivalence)

The two equilibria 6.1. and 6.2. are isomorphic.

- ► Proof:
 - × Take equilibrium 6.1. and define $B_t = \frac{M_{t-1}}{P_{\star}}$ and $R_t = \frac{P_t}{P_{\star+1}}$.
 - \times With these *B* and *R*, the consumptions of equilibrium 6.1. are also equilibrium consumptions of 6.2.
 - $\times~$ The gvt. BC is satisfied in equilibrium 6.2.

6.3. Time-0 trading with ARROW-DEBREU securities

- ▶ The same allocations than 6.1. and 6.2. can be obtained in equilibrium 6.3. if we transfer the right amount of goods to the old of period 1.
- Let B_1^g be claims to time 1 consumption owed by the gvt. to the old of time 1.

6.3. Time-0 trading with ARROW-DEBREU securities

Definition 9 (Time-0 trading with ARROW-DEBREU securities equilibrium)

An equilibrium with time-0 trading is a B_1^g , a price system $\{q_t^0\}_{t=1}^{+\infty}$ and savings $\{s_t\}_{t=1}^{+\infty}$ such that

1. given $\{q_t\}$, $\{s_t\}$ satisfies

$$s_t = Argmax_{\widetilde{s}} \quad u\left(y_t^t - \widetilde{s}_t\right) + u\left(y_{t+1}^t + rac{q_t^0}{q_{t+1}^0}\widetilde{s}_t
ight)$$

2. Gvt. intertemporal BC holds:

$$\underbrace{q_{1}^{0}B_{1}^{g}}_{negative} + \underbrace{\sum_{t=1}^{+\infty}q_{t}^{0}g_{t}}_{positive} = 0$$

Note that $q_1^0 B_1^g < 0$ represents negative net worth for the houshold.

6.3. Time-0 trading with ARROW-DEBREU securities

In that time-0 trading equilibrium, one can construct a sequence of public debt using

$$q_{t+1}^0B_{t+1}^g=q_t^0B_t^g+q_t^0g_t \hspace{0.5cm}orall t\geq 1$$

▶ B_1^g can be obtained from the gvt. intertemporal BC:

$$q_{1}^{0}B_{1}^{g} = -q_{1}^{0}g_{1} + q_{2}^{0}B_{2}^{g} -q_{1}^{0}g_{1} + (-q_{2}^{0}g_{2} + q_{3}^{0}B_{3}^{g}) \cdots -\sum_{t=1}^{+\infty} q_{t}^{0}g_{t} + \underbrace{\lim_{T \to +\infty} q_{t+T}^{0}B_{t+T}^{g}}_{\text{impose }=0}$$

6. Equivalent setups 6.4. Population Growth

- ► Assume $N_{t+1} = nN_t$, n > 0
- Consider the equilibrium with money-funded deficit
- $M_t = \text{per capita level of currency}, g = \text{per capita gvt. expenditures}$
- Money supply = $N_t M_t$

$$\blacktriangleright \text{ Gvt. BC}: N_t M_t - N_{t-1} M_{t-1} = N_t P_t g$$

• Divide by $N_t P_t$:

$$\frac{M_t}{P_{t+1}} \frac{P_{t+1}}{P_t} - \frac{N_{t-1}}{N_t} \frac{M_{t-1}}{P_{t-1}} \frac{P_{t-1}}{P_t} = g$$

or equivalently

$$\frac{M_t}{P_{t+1}} \frac{P_{t+1}}{P_t} = n^{-1} \frac{M_{t-1}}{P_t} + g$$

or

$$M_t - n^{-1}M_{t-1} = P_t g \quad \rightsquigarrow$$
 same as before but for n^{-1}

7. Optimality and existence of monetary equilibria Setup

- Sequential trading, no gvt.
- \blacktriangleright $N_t = nN_{t-1}$
- endowments (y_1, y_2)
- $u(c_t^t, c_{t+1}^t)$ • $\theta(c_1, c_2) = \frac{u_1(c_1, c_2)}{u_2(c_1, c_2)}$ Marginal Rate of Substitution
- Assume θ is well behaved:

$$egin{array}{lll} imes & heta
ightarrow 0 \ imes & heta
ightarrow 0 \ imes & heta
ightarrow +\infty \ ext{when} \ rac{c_2}{c_1}
ightarrow +\infty \end{array}$$

7. Optimality and existence of monetary equilibria Setup

 $\blacktriangleright M_0 = N_0 m_0^0$

- ▶ for $t \ge 1$, $M_t = zM_{t-1}$, z > 0: transfer or tax $(z 1)M_{t-1}$ that is equally distributed to the old of period t in a lump sum way
- ▶ BCs of a generation *t* agent:

$$egin{array}{rcl} c_t^t+rac{m_t^t}{P_t}&\leq y_1\ c_{t+1}^t&\leq y_2+rac{m_t^t}{P_{t+1}}+rac{(z-1)}{N_t}rac{M_t}{P_t}\ m_t^t&\geq 0 \end{array}$$

7. Optimality and existence of monetary equilibria Setup

▶ Non monetary equilibrium (autarky):

$$heta_{\mathsf{aut}} = rac{u_1(y_1, y_2)}{u_2(y_1, y_2)}$$

► Two questions

- 1. Under what circumstances does a monetary equilibrium exists?
- 2. When it exists, under what circumstances does it improve welfare as compared to the non monetary equilibrium?

7. Optimality and existence of monetary equilibria Preview: when z = n = 1 and $u = u(c_1) + u(c_2)$

Proposition 4 (Existence)

 $\theta_{\textit{aut}} < 1$ is N and S for the existence of at least one monetary equilibrium

- ► Idea of the proof:
 - 1. $\theta_{aut} = \frac{u'(y_1)}{u'(y_2)}$
 - 2. $\theta_{aut} < 1$ implies $y_1 > y_2 \rightsquigarrow$ "desire to save" \rightsquigarrow "demand for asset" \rightsquigarrow Money will be positively valued

7. Optimality and existence of monetary equilibria When z = n = 1 and $u = u(c_1) + u(c_2)$

Proposition 5 (Optimality)

 $\theta_{aut} \ge 1$ is N and S for the optimality of the non-monetary equilibrium

- Idea of the proof (by contradiction):
 - × Assume $\theta_{aut} < 1$. This implies $y_1 > y_2 \rightsquigarrow$ autarky is not PARETO optimal

7. Optimality and existence of monetary equilibria Preview: when z = n = 1 and $u = u(c_1) + u(c_2)$

• Summary: if $y_1 > y_2$,

- \times Proposition 5: Non-monetary eq. is not efficient
- \times Proposition 4: (at leat one) Monetary eq. exists

 \rightsquigarrow It can be generalized for any z and n positive.

7. Optimality and existence of monetary equilibria Optimality

Proposition 6 (Existence of a monetary equilibrium)

 $\theta_{aut} \times z < n$ ("the interest rate is low in autarky") is N and S for existence of at least one monetary equilibrium.

Proposition 7 (Optimality)

 $\theta_{aut} > n$ is N and S for the optimality of autarky

7.1. BALASKO-SHELL criterion for optimality

▶ Make assumptions on endowments and preferences to rule out pathological cases

Proposition 8 (BALASKO-SHELL (1980) criterion)

An allocation is PARETO optimal if

$$\sum_{t=1}^{\infty}\prod_{s=1}^{t}(1+r_s)=+\infty$$

▶ In words, the real interest rate should not be too low for optimality of equilibria

