2023-2024 — Econ 0107 — Macroeconomics |

Lecture 4 : Fiscal Policies in a Growth Model

(Chapter 11 in LJUNQVIST & SARGENT)

Franck Portier
F.Portier@UCL.ac.uk

University College London

Version 1.2
29/10/2023

Changes from version 1.0 are in red

1/81


mailto:F.Portier@UCL.ac.uk

1. Introduction

» Complete market economy
» Time-0 trading
» Add production and taxes
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2. The economy
2.1. Preferences, Technology, Information

> No uncertainty
> Representative household (hh)

o0

> BtU(ce, 1 ny)

t=0

» Typically, in DSGEs:
x U=u(c)+v(l—n)
x U=logc+(log(l—n)
X U=logc+{x(1—n)
x U = u(c) (fixed labor supply)

(2.1)
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2.1. Preferences, Technology, Information

» Technology:

F(ke,ne) > ge+ ¢ + % (2.2.a)
kt+1 = (1 - 5)kt + Xt (22b)

s
8t =+ Ct =+ kt+1 S F(kt, nt) + (1 — (S)kt (23)

> F is a neoclassical production function: linearly homogenous of degree 1:
F(\k,An) = A F(k, n)
> Euler theorem: F k+ Fon=_ M\ F
1
» Example: F = k%" 0<a<1
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2.2. Components of a competitive equilibrium

> (Representative) Hh: owns capital, makes investment decisions, sells labour and
capital services to the representative firm

> (Representative) Firm: rents labour and capital to produce final good

> price system {q;, ne, W}
X pre-tax prices
X g (formerly denoted q?): price of one unit of investment or consumption in t in
units of time 0 numéraire.
X mg: price of capital services in units of time t good
X wy: price of labour services in units of time t good
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2.2. Components of a competitive equilibrium

Definition 1

A govt expenditure and tax plan that satisfies the govt budget constraint is
budget-feasible

> Competitive equilibria are indexed by alternative budget-feasible govt policies
» Hh budget constraint:

Z qr (1 + 7ee)ee + (kerr — (L= 0)ke)) < Z qr | neke — Tre(ne — 6) ke +(L — Toe)Wene — The
t=0 t=0

(1=Twe)neke+Tie I ke
(2.4)

> Note: depreciation allowance dk; from gross rentals on capital.
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2.2. Components of a competitive equilibrium

» Govt budget constraint:

o oo
Z qigt < Z Gt (TetCt + The(Me — O) ke + Tewene + The) (2.5)
t=0 t=0

> Note: if the govt was optimising, it would use only lump sum taxe 7.
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3. Term structure of interest rates

> {q:}72o encodes the term structure of interest rates

_ 9192 qc
qt = Cqu*q* ce q =dqomo1mi2---Mt_11+
0 g1 t—1
qe+1 . . .
> Mirr1 = is the one-period discount factor between t and t +1
q:
1
_ p-1 _ ~ a1
Meer1 = Repg =7 ———~e™
o+ 1+ reed1
> We can write
qr = qoe—mge—ﬂz‘,,e—ﬁ¢+1
— qoe*(mJ+n2+~w+n7Lﬂ
= qoe Tt

with
1
n: = ;(fo,l +rno++ 1)
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3. Term structure of interest rates

tro,¢

> gt = qoe
> ro,¢ is the net t-period rate of interest between 0 and t.

> It is the yield to maturity on q zero coupon bon=d that matures at t.
> More generally, one can write

1
Itt4+s = g(ft,t+1 + repteq2 4+ Feps—14s)

> From s =1,2, ..., we obtain the yield curve

n
b;hS
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Detour: Interpreting the slope of the yield curve

> Take the simple endowment economy
max Z Bllogc: s.t. Z gecr < Z ary: (M)
t t t

» First order condition (foc) is ﬂtjt = \qt
> Ratio of focin t+ s and t:

go Gt Gees _ qoe(EFe).es
Ct+s qt goe (D).t
> Take the log and rearrange:

— S
= e t,t+s

It,t+s = Yer,ers T 108 8

where 7, ... is the average per period growth rate of consumption between t and
t+s
> Expecting lower growth in the future implies that r¢ s decreases with s
(“inversion of the yield curve is a predictor of recession)”
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Detour: Interpreting the slope of the yield curve

FORBES » MONEY > INVESTING

Yield Curve Less Inverted, But
Recession Warning Remains

Simon Moore Senior Contributor ®
) Follow
I show you how to save and invest.

Oct 9, 2023, 10:58am EDT
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4. Sequential version of the govt budget constraint

> It is useful to describe the sequence of on-period public debt associated with the
expenditures and tax revenues (but it is not needed to compute the equilibrium)
> Assume no govt debt when entering period 0.
> Let T; be the total tax revenues:
T: = TetCr + Tie(Ne — O) ke + Tewene + The

The govt intertemporal budget constraint is

[oe)
> ar(ge—T)=0 (4.1)
t=0
that can be rewritten as
g
t
0 — To = —(T: — *
8 ;QO( t — 8t) (*)

current deficit
discounted sum of future surpluses
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4. Sequential version of the govt budget constraint

> in a sequential world, one can think of period 0 deficit as being financed by debt

Boi

» Therefore (x) implies

or

or equivalently

By =g0o— To

+— 90
q = q
0
Z B=Ti-a+y (Te—g)
q1 —> q
Ro,1 B,

g1+ Ro1Bo=T1+ By
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4. Sequential version of the govt budget constraint

> In period t, we will have
gt+ Ri—1:tBi—1=T: + B;
or
Bi—Bi1 = g—T: + re—1,¢Be-1 (4.4)
new debt issuance  primary deficit net interest payments

» The Arrow-Debreu budget constraint (4.1) ensures the no-Ponzi scheme
(transversality) condition

tlrgo q:Bty1 =0
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4. Sequential version of the govt budget constraint

> Note:

X There is no loss of generality in considering only one-period debt
X The maturity structure of govt debt is irrelevant.
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5. Competitive equilibrium with distorting taxes

» Hh chooses {ct, ne, ker1} for t =0, ... to max U s.t. the budget constraint

» Firm chooses {k¢, n:} for t =0, ... to max firm value Vg

o0

Vo = Z gt (F(kt, nt) — Neke — thtz
t=0

profit of period t

» A budget-feasible policy is an expenditure plan {g:} and a tax plan
{Tcts Tnt, Tkt, The } that satisfies the govt budget constraint.
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5. Competitive equilibrium with distorting taxes

Definition 1
A competitive equilibrium with distorting taxes is
> a budget-feasible allocation
> a feasible allocation
P a3 price system
such that, given the price system and the govt policy
> the allocation solves the hh problem

> the allocation solves the firm problem
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5.1. The hh: no-arbitrage condition and asset-pricing formula

» The hh intertemporal budget constraint (ibc) is

D qe (U4 7er)ee + (kerr = (1= 0)ke)) < O qe (neke — Te(ne — 6)ke + (1 = Tne)Wene — The)

t=0 t=0
(2.4)
> Rewrite the terms in blue as follows (on the right-hand side of the ibc)
X terms in ko:

qo(1 —6) + qomo — qoko(n0 — 8) = ((1 — 7%0) (0 — 0) + 1)qo

X terms in k;:

_Qt—l+qt(1_5)+qmt—qt7'kt(77t—5) = ((1 - Tkt)(77t - 5) + 1)Qt - qe—1
—~—

return on capital cost of capital
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5.1. The hh: no-arbitrage condition and asset-pricing formula

> Therefore, the budget constraint rewrites

Z qe(1 + 7et)ce < Z qe(1 — Tpe)wene — Z QtTht

t=0
00

+ Z(((l — Tke) (e — 0) +1)Ge — Ge—1) ke

+ ((1 = ko) (mo — 0) + 1)qoko
— _lim qrkr4 (5.1)
T—o0

» Hh would be happy to have the highest possible right-hand side of (5.1)

» But this rhs must be bounded in equilibrium (because resources are finite) ~~ this
is putting restictions on equilibrium prices.
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5.1. The hh: no-arbitrage condition and asset-pricing formula

> Take the term in k2 pr = (((1 — Tke) (e — 6) + 1)qt - qt1>

X if p > 0: hh can:
P> buy in t — 1 arbitrarily large k: with present value q:—1k:
> sell in t rental services and undepreciated part to obtain a present value income of
(1 = 7we) (e = 6) + 1)qe) ke
> as p: > 0, thus gives an arbitrarily large benefit
> the rhs of (5.1) would then be unbounded ~~ not an equilibrium.
X if p < 0: hh can does the reverse:
> short-sell in t — 1 at price g:—1
> deliver in t buy buying at price ((1 — 7«t)(ne — 6) + 1)g:
> again, the rhs of (5.1) would be unbounded ~~ not an equilibrium

> Therefore, by no-arbitrage
T (Q—rme)ep—0)+1 VE>0 (5.2)
qi+1
» and no possibility to short-shell at +o0:

lim grkr11=0
T—oo
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5.2. User cost of capital

> Rewriting (5.2):

1 (eF3
Ne+1 = 0 + () < — 1) 5.4
N ~~ 1 — Tyt Ge41 (54)

user cost of capital ~ depreciation

TV
taxes capital gains or losses
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5.3. Hh foc

oo
max L = ZﬁtU(ct, 1—ny)+ p ibc
t=0
» Hh are indifferent about the level of k; as long as the no-arbitrage condition holds
> foc for ¢; and ny:

BtU1e = pqe(1 +7)  (5.5a)
Bt Uzt = pwe(1 — 1) (5.5b)

assuming an interior solution n; < 1.

> We see that only pq: matters, not i and g; separately ~» once can choose a
numéraire, or can arbitrarily normalize =1
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5.4. A theory of the term structure of interest rates

» Assume U(ce, 1 — ny) = u(ce) + v(1 — ny)

> foc wrt to ¢;:
/
_ qt U(c)
par = 1+ 7o
» {q:} and therefore the term structure can be computed if we observe {c;} ~~
CCAPM
» Govt policy {gt 7ct, Tnt, Tke, The } affects equilibrium {c;}, and therefore the term

structure.
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5.5. Firms

> Firm value is
Vo = Z qt kt7 nt — Wihy — TItkt)

» Because of homegeneity of degree 1 (Euler theorem):
ZQt Fnt — we)ne + (Fee — me)ke)

> By no-arbitrage:
ne = Fu
5.7
we = Fpt (57)
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6. Computing equilibria

> {gt,Tt} = {gt,Tct,Tnt,Tkt} is exogenous
[e.9]
> Z qtTht is endogenous and makes sure that the govt intertemporally balances its

t=0
budget.
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6.1. Inelastic labor supply

>
| 4
>

assume U(c,1 — n) = u(c) and hh inelastically supply n =1 (normalization)
Define f(k) = F(k,1)
Feasibility writes

kev1 = (1 — 6)ke + f(ke) — gt — ¢t (6.1)
Note that F(k, n) = nF(k/n,1) = nf(k) with k/n = k)
One then has:

Fo = a[nF(ak/{n,l)] _ o % " 8/;((/;///,77,)1) _ f’(E)
and
F,— d[nF(k/n,1)] _ —k  OF(k/n,1) - F(k/m1) = f(E) B Ef’(?)

an 2 " T a(k/n)

and when n =1, F, = f'(k) and F, = f(k) — kf'(k)
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6. Computing equilibria

Some substitutions

> Take resource constraint
kiv1 = (1 —0)ki —ger— ct
» Obtain ¢; and replace in the foc
Biu' (et )=p qr (14 7er)
» Obtain g; and g:+1 and replace in the no-arbitrage condition

(ef3
qt+1

= (1= Teq1)( M1 = 0) +1

where 711 is replaced using the no-arbitrage condition 7; = Fj;
> We then obtain a nonlinear second order difference equation in k;
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6. Computing equilibria

A second order difference equation

u' (F(ke + (1 — 0)ke — g — key1) U (F(kerr + (1 —0)ker1 — 8ev1 — ket2)

(1—7et) 5 (1 — Ters1)
X (1= ke (F (key1) — 6) + 1)
=0
(6.2)
> initial condition kg
> terminal condition lim qrk711 =0
T—o00
> for given gvt policy
> (6.2) can be rewritten as
’ _p (1—7a) '
u' (cr)) = Bu'(cer1) m——— (1 = Thes1)(F'(ker1) — 0) + 1) (6.3)

(1 — Tct+1
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6.2. Equilibrium steady state

» Let z; = {gt, Tke, Tt } be the sequence of exogenous variables

» (6.2) can be written as
H(ke, ke, ket2, 22, ze41) = 0 (6.4)

> For the steady state to be relevant, we look at cases where

tll)no]o zZt =2z (65)
> At the steady state, we have
H(k,k, k,z,Z) =0 (6.6)
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6.2. Equilibrium steady state

> (6.3) writes at the steady state

v () = ﬁu’(c>8 _:3 (1 =7)(F (k) = 0) +1)

which gives

1=3((1—=7k)(f(k) =6)+1) (6.3b)
» Note: 7. does not distort k

1
> With — =1+ p, steady state capital is pinned down by

B

Flk)y =0+ "
(k) + 1—7
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6.3. Computing the equilibrium path with the shooting algorithm

> We want to solve the below difference equation system:

U(ct) = Bu'(cesr) (1_ et) ((1 = 7hes1)(F'(kes1) — 6) + 1) (Euler equation)
(1 7—ct+1)

kt+1 = (1 - 6)kt — 8t — Ct (683)
with boundary conditions
ko given

lim BTM

k
Tooo (L47er)

where we have used 87 v/(c1) = pge(1 + 7et)
> Shooting algorithm:
X Take terminal period S large but finite
% Impose ks ~ k
X For given ¢, iterate the difference system forward starting from (ko, o) and
compute ks
X Try many values of ¢y

% Solution is found for the ¢ such that ks ~ k e



6.3. Computing the equilibrium path with the shooting algorithm

» Once this is done, find {7} such that the govt budget constraint is satisfied

» Then compute prices using

o = pie (6.8

o) :
Nt = (k) (6.8¢)
Wy = f(kt) — ktf'(kt) (6.8d)
— 1+
Revi = (1= Thes1)((F(ker1) — 0) + 1) (6.8e)
1+ Tetia
_ + Tet
N 1+ Tet+1 t,t—l_l
_ 14
R, = — p-le) <t 8f
tt+1 mt,t+1 /8 U/(Ct+1) 1 _'_ Tet41 (6 8 )
It t+1 = Rt,t+1 - L: (1 - Tkt+1)(f/(kt+1) - 5) (6.8g)
U/(Ct) = BU/(CH_l)RH_l (68/1)
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6.3. Computing the equilibrium path with the shooting algorithm

1y

, then (6.8h) becomes

> ifu(c)zlc

Ct41

log =~"Ltlog S+~ tlog Ryt (6.9)

t

> (6.9): consumption growth varies with distorted real interest rate.
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6.6. When lump-sum taxes are available

» What we have just done is to implement the shooting algorithm taking as given

{gta TCtv Tnta Tkt}-
o0

» Then, once prices and quantities are obtained, {7} is set such that Z g+ Tht
t=0
balances the govt budget constraint.

» We can do this two-step computation because {7:} are nowhere in equations
(6.8)
» The timing of {7y} is irrelevant ~» Ricardian equivalence
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6.7. When no lump-sum taxes are available

» Then, an additional step is needed in the algorithm: making sure that the govt
budget constraint is satisfied.
> Algorithm given a sequence of {g:}:

X Assume sequence of taxes {Tct, Tht, Tt }

X solve for the equilibrium using the shooting algorithm
X check if the budget constraint of the govt is satisfied
X If not, adjust taxes and repeat.
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8. Effect of taxes on equilibrium allocations and prices

» 7., Tp and 7y are distortionary, meaning that hh can affect their tax payments by
altering their decisions.

P 74 is non distortionary.
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8.1. Lump-sum taxes and Ricardian equivalence

» Suppose 7. =0, 7, = 0 and 74 = 0 ~» 7, does not enter anywhere in (6.8)
» The timing of {74} is irrelevant, only Z q:The Matters in govt and hh

intertemporal budget constraints.

» This is Ricardian equivalence
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8.2. When labour supply is inelastic

» 7, is not distorting
> Constant 7¢ is not distorting
> Variations in 7. are distorting

> Capital taxation 7y is distorting
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9. Transition experiments with inelastic labour supply

» Assume
17

% U(c,1—n)=u(c) = lc_; f(k) = k°

X a=1/3,0=0.2,5=.95 g=0.2
X ~v=2o0orv=0.2

> First we do a foreseen once-for-all increase in g, 7, Tk

» The change is announced a t = 0 and takes place at t = 10, and the economy
was at the steady state before 0.

> Although no change is implemented before t = 10, the economy reacts on impact

> Why? Because hh wants to smooth consumption ~~ they adjust their savings
from period 0 and onwards ~ prices and quantities move at time 0.

» Two forces are at play in the dynamics:

X discounting of the future before T
X transient dynamics after T

and these two forces are interrelated (see later)
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9. Transition experiments with inelastic labour supply

Foreseen permanent increase in g

0.4
03

02— -==---=-=
0.1

0
o 0

20 4

0 20 40

Figure 11.9.1: Response to foreseen once-and-for-all in-
crease in g at t = 10. From left to right, top to bottom:
k,c,R,m,g. The dashed line is the original steady state.

The steady state level of k is unaffected (see
(6.3b))

g/ N
from 0 to 10: ¢\, ~ k  (because g —)
Initial negative wealth effect of ¢ (because

Z QtTht /‘)

The dynamics of R makes the hh choosing a non
flat ¢ profile.

Both feedforward and feedback dimension in the
response of the economy (more on this later)
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9. Transition experiments with inelastic labour supply
Foreseen permanent increase in g, v =2 or 0.2

» More willingness to smooth consumption when
026 v = 2 as compared to when v = 0.2

» When + is small (the limit would be linear utility),
¢ becomes the mirror image of g

4 » Less feedforward and less feedback effect ~~ the

Figure 11.9.2: Response to foreseen once-and-for-all in- two dimensions are related (See Iater)

crease in ¢g at ¢ = 10. From left to right, top to bottom:
k,c,R,m,g. The dashed lines show the original steady state.
The solid lines are for v = 2, while the dashed-dotted lines
are for v = .2
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9. Transition experiments with inelastic labour supply
Foreseen permanent increase in g, asset prices

. q
065F====c===+ 1 0.
0.6 0.8 N N
0.55] 06 ‘\\ 004
0.5) 04 \\\ y t -
045 02 Sl ° > qr = /8 Ct 7
0.4 77
0 20 40 0 20 40 0 20 40 Ct+1
] » Short rate r; 141 = —log 8
0.
---------- 04 . . Ct. . .
004 | 02 » q;: price of future consumption is higher in the
L 02— ------- . .
o o future (when g is higher)
’ 0
I B IR I » Term structure at 10 periods: upward sloping

because the growth rate of ¢ is expected to
increase (to be less negative)

Figure 11.9.3: Response to foreseen once-and-for-all in-
crease in g at ¢ = 10. From left to right, top to bottom:
¢,q,7¢,¢+1 and yield curves ry s for t = 0 (solid line), ¢ = 10 » Term structure at time 0O is U Sha ped
(dash-dotted line) and ¢ = 60 (dashed line); term to maturity

s is on the x axis for the yield curve, time ¢ for the other

panels.
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9. Transition experiments with inelastic labour supply

Foreseen permanent increase in 7

0.¢ 1.1
066 N
0.64
0.62
13 o 0.85
20 20 0 20 40 20 40
N T
0.28
04
0.27 0.3
02}  —
0.26 01
R
0.25 01
0 20 40 0 20 40

Figure 11.9.4: Response to foreseen once-and-for-all in-
crease in 7, at t = 10. From left to right, top to bottom:
ke, R, ..

v

o () = i (rs) o (1= e )(F () — 9) 1) (63)
(1= Tert1
. (1= -
Anticipated decrease in (7Ct) = anticipated
( — Tect+1

increase in 7y, as seen in (6.3)
The hh frontloads consumption, by \, ¢
No effect on the steady state

After T, no more anticipation effect ~~ transient
dynamics when starting with low k
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9. Transition experiments with inelastic labour supply
Foreseen permanent increase in 7

. " B > Lower final steady state ~~ some capital can be
.l o eaten in the transition ~ ¢  before period 10.

5 I > After 10, transient dynamics from a higher that
0 tbbbhbhb] I | steady state stock of capital.

Figure 11.9.5: Response to foreseen increase in 7, at t =
10. From left to right, top to bottom: k, ¢, R,n, 7. The solid
lines depict equilibrium outcomes when v = 2, the dashed-
dotted lines when v = .2.
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9. Transition experiments with inelastic labour supply
One time impulse gig

1.065

1.06
1.055
1.05

1.045

L e L > Again, the anticipation effect is at play before 10
oz : y : » Desire to smooth ¢
o > in 10, govt takes out some good for g, but ¢ stays
o1 smooth ~~ investment adjusts by “\..

0

-0.1
20 40 0 10 20 30

Figure 11.9.6: Response to foreseen one-time pulse increase
in g at t = 10. From left to right, top to bottom: k,¢, R, 7, g.
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10

v

. Linear approximation

Shooting algorithm can be tricky in larger models

Useful to look at the solution of a linear approximation (one can also do log-linear)
idea: Assume the model is

ker1 = o(ke)
The steady state is k = (k)
Linear approximation: _ _ _
(kev1 — k) = (k) (ke — k)
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10. Linear approximation
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10. Linear approximation

o b= b
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10. Linear approximation
Solution

> Let's show an important result: the model solution can be partitioned into a
feedback and an feedforward part.
> Model is
H(kt, kv, keto, zt, Zt+1) =0

> The steady state is given by

P Linear approximation is

Hi, (kt - E) + Hkt+1 X (kt+1 - E) + Hkt+2 X (kf+2 - E)
+H,, x (2t = Z) + Hz,, X (2e41 — 2) (10.1)
=0

with Hy, = Hkt(E, E, %, z, f),
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10. Linear approximation
Solution

> Rewrite (10.1) as

dokiro + O1ker1 + ook = Ao+ A1zt + Adze g (10.2)

or
¢(L)kt+2 = Ao+ A1z: + Aoz (103)
> We want to solve this equation, i.e. find k;11 as a function of past endogenous

variables (k;—;) and exogenous variables z (past, present or future as there is here
no uncertainty)

» To do so, we will manipulate and transform the characteristic polynomial
$(L) = po + d1L + d2L?

> Let 1 be the two roots of ¢ (the solutions to ¢(L) = 0). Assume they are
non-zero, real and distinct (can be proved in some environments)

> We have ¢(L) = ¢2(p1 — L)(p2 — L) and p1pi2 = o/ 2.
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10. Linear approximation
Solution

1
» Write pj — L = p; <1 - L> so that ¢(L) can be written
i
1 1
Popi1 12 (1 = L> <1 . L>
Nt 7 2
0

1
Denote \; = — to obtain
Hi

(L) = ¢o(1 — A1L)(1 — A2L)

> Let's assume (more on this later) that [\1| > 1, [X2] <1

52/81



10. Linear approximation
Solution

» Because |A1]| > 1,

o0

(1— L)~ Z X/ diverges

» We can flip this infinite sum:
(T—=ML)=—ML(1=A7MLh)
and

(L=t Z AL converges

> Recall that L™1x; = Xe11
o]

> Z )\l_jL_f is a forward looking term, which corresponds to a discounted sum of
Jj=0
future values, with discounting at rate )\1_1
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10. Linear approximation
Solution

> We can then rewrite ¢(L) as follows:
P(L) = ¢o(1—AL)(1— A2L)
= ¢o(—ML) (1= A TL7Y) (1= AoL)
P and using ¢> = A1 A2¢0:
o(L) = =% (1= A1) (1 - 2l)
» so that (10.3)
¢(L)ker2 = Ao + A1zt + AzZey1

writes

—¢2

N (L= A7MY) (1= ML) Lkeso = Ag + Arze + Avzesa

(10.3)

(10.6)

54 /81



10. Linear approximation
Solution

—;1;2 (L= ALY = Nol)Lkero = Ao + Arze + Aszenn

> Put the blue term on the right-hand side of the equation:

Mol
(I —XoL)keqr = (I;ﬁzL—l)AO + A1z: + Axzra
\—/—/ — 1
Transient dynamics, ~
“feedback’ Expectational dynamics,
“feedforward”,

“backward looking”
“forward looking”

(10.7)
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10. Linear approximation
Solution

» (10.7) can be more explicitly written as

o0
ker1 = doke — Aoy ' Y (M) 7 [Ao + Arzesj + Apze ] (10.8)
j=0
» (A1) 7/ is the rate at which expectations about the future are discounted
» The derivation relies on the fact that [A;] > 1 and |\;| < 1.
» Whether this is true or not depends on the economic environment.
>

It is true in the neoclassical growth model we are working with.
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10. Linear approximation
Relation with the shooting algorithm

> ko is given

» In the linearized model, ki (or equivalently ¢p) is chosen looking at the whole
future.

» It corresponds in the shooting algorithm to the choice of the ¢y such that ks = k
after S periods, i.e. in the future
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10.1. Relation between the \;s

» When {g:, :} = 0 Vt, one can prove (a bit long) that
M2 =1/3

and that
I\| >1/y/B

and

I\ < 1/4/B
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10.2. Existence and uniqueness of the equilibrium dynamics

» When |A1] > 1 and |A\2| < 1, we have existence and uniqueness of the equilibrium
dynamics

> This is a case in which for given kg, there is a unique ¢y that satisfies non
explosion.

» This is what we call saddle-path stability

P There are as many roots on the unit disc as predetermined variables =
Blanchard-Kahn [1980] condition
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10.2. Existence and uniqueness of the equilibrium dynamics

Saddle Path Stability

keyo

\

ket1
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10.2. Existence and uniqueness of the equilibrium dynamics
Instability

» When |A1]| > 1 and |\2| > 1, the model becomes explosive.
» One would need ko to jump to k, but this is not possible as kg is predetermined.

» The economy will explode and at some point will violate resource constraint or
positivity of ¢ and k.

P The equilibrium does not exist.
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10.2. Existence and uniqueness of the equilibrium dynamics
Instability

keyo
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10.2. Existence and uniqueness of the equilibrium dynamics
Indeterminacy

» When |A1] <1 and |X\2] < 1, the model is indeterminate: there is a continuum of
paths that converge to the steady state.

> Given kg, any ¢y id admissible.

» There are sunspot equilibria: if the economy believes that it should start from
some ¢, this is an equilibrium, and many ¢y are admissible.
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NnT.Nv\

10.2. Existence and uniqueness of the equilibrium dynamics

Indeterminacy
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10.3. Once-and-for-all jumps

> Given the above algebra, we can write the full approximate solution following a
once-and-for-all jump in one forcing variable.

P Assume that the economy is initially at the steady state, that we normalize to
k=z=0
> Assume z is of dimension 1.

» The shock is :
_JOo ift<T-1
ATV 7 ift>T-1

65/81



10.3. Once-and-for-all jumps

> Define:
1\t 1
o0 <)\> Tz Tl
ve=Y Az = 11 - () (10.10)
i=0 I z if t>T-1
1-(5)
T—(t+1) 1
he = Az = 11 b (10.11)
i=0 —Z if t>T—1
1 _'(Al)
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10.3. Once-and-for-all jumps

» Then using

ker1 = doke — Aoy ' Y (M) 7 [Ao + Arzesj + Aze ] (10.8)
j=0

we obtain the solution

-14 )1 ANT—t
Aok, — (P0A)" Ao (0 11) (1*1) (AL +A\)Z  if t<T—1
vt = (doh) :
)\2kt_171(A0+A1+A2)\2)E if t>T—-1
Y
1 (10.10)
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11. Growth

> Now Yt = F(Kt,Atnt)

> Arr1 = pA:
Y, K C G
» Deflate quantity variables: y; = —— L oa=—1 g = ——
Agne Aeny

tnt, £ At”t'
> yr = f(kt) = F(ke, 1)
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11. Growth

P Assume again that labour is inelastically supplied and n; =1

> Feasibility:
kevr = p N (F(ke) + (1= 0) ke — ge — ) (11.4)
> Euler:
/ _a (1+ 7er) /
u (AtCt) = ﬁU (At+1Ct+1)7 ((1 — Tkt+1)(f (kt+1) - 6) + 1) (115)
(1 + TCt+1)
1—

> With u = 1C ,

Ct

’y JR—
(CtH) = B TRy

~ it is “as if" discount rate is now Su~ " ~»grwth increases discounting because
marginal utility is decreasing (therefore future units of good are worth less with
growth.
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11. Growth

> At the steady state of the deflated economy (which corresponds to a balanced
growth path of the non deflated economy):

(I+pp” -1
1— 74

F(k) =6+ (

~~ k is smaller when p > 1 (as compared to p = 1)
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11. Growth

> We can solve the deflated economy using the shooting algorithm
» Then we can recover the levels by multiplying by A:: Ky = Acks = Aou'k(t), etc...

> Note that a permanent increase in
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11. Growth

Foreseen permanent increase in p

Figure 11.11.1: Response to foreseen once-and-for-all in-
crease in rate of growth of productivity p at t = 10. From
left to right, top to bottom: k,¢, R,n, i, where now k,c are
measured in units of effective unit of labor.

» New steady state level of k is lower

» Consumption jumps immediately because people

are wealthier.

» Increase in the gross return R
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11. Growth

Surprise permanent increase in p

R

B 20 40 o 0 20 4(]1 0 20 40

n K . .
o o > It looks very much like the transient part (after
mf " period 10) of the previous figure
03 102k == =======
P " » Increase in the gross return R
029 20 w0 o 10 20 a0

Figure 11.11.2: Response to increase in rate of growth of
productivity p at t = 0. From left to right, top to bottom:
k,c, R,n, 1, where now k, ¢ are measured in units of effective
unit of labor.
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12. Elastic Labour supply

max L = ZﬁtU(ct, 1—n¢)+ pibe
t=0

» On top of the Euler equation, have an extra foc, which is the static consumption
leisure decision.

» The two foc write
Ur(F(ke, ne) + (1 — 6) ke — gt — kev1, 1 — nt)

14 Tt
h (1 + Tct+1)
X Ur(F(ket1, nes1) + (1 — 0)kerr — 8¢ — keg2, 1 — neq1)
X[(1 = 7ker1) (Fe(kes, ne1) — ) + 1]
Uz(F(kt,nt)-i-(l—5)kf—gt—kt+1,1—nt) o (1—7‘,,1» F(k n)
Ur(F(keyne) + (1 — 8)ke — g¢ — ke, L—ne) 14 7 e T
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12. Elastic Labour supply

Steady state

> We can again solve the model using the shooting algorithm or solving a linearized
version.

> The steady state is now given by

@(1(+ « —gk)(Fk(k,n)—é)) =1 (12.5)
2lC, L —n B — Tn 7

Ui(c,1 - 1) - <1 %> (k) (126
c+g+dk = F(k,n) (12.7)

_ k ~
> Given that Fy(k,n) = Fk(%,l), (12.5) pins down k =
> (12.7) writes

S| x|

p - ~
o+ L =f(R)

~> only 7 distorts k.
» But 7. and 7, now distort the consumption/leisure decision.
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12. Elastic Labour supply
Steady state

» Assume U(c,1 — n) = logc+ B(1 — n) (Hansen-Rogerson preferences)
P> B is chosen such that 0 < n <1

> k can be computed from f(;) =0+ 1 P
— T
P> The rest of the steady state can be computed as follows:
1/1-1 ~
12.6) implies ¢ = — ) (F(k — k(' (k
< (126) implies < = ({572 ) (k- K(7/(0)
% Then (12.7) implies € + g + dk = nf (k) so that

A(f(k) — 6k)"Y(c + &) (12.14)

which pins down 7 _
X Once 7 and k are known, k = Tik can be obtained

> Let's assume same parameters values plus B = 3.
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12. Elastic Labour supply

Unforeseen permanent increase in g

:9 N :: ---------- » We have shown that%/ﬁ and € not affected at the
; . , steady state
' ot 04 » (12.14) then implies that 7 and therefore that
“\ ol e k
o8> 0ss o > In the transition, ¢ N\, and n 7, which is bad for
‘o 20 40 0 20 40 ’mn 20 40 we I fa re.

Figure 11.12.1: Elastic labor supply: response to unfore-
seen increase in g at t = 0. From left to right, top to bottom:
k,c,n, R,w,g. The dashed line is the original steady state.
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12. Elastic Labour supply

Unforeseen permanent increase in 7,

7 w o
1.055 084
0.4]
1.05 082
03
1.045
08| 0.
1.04
0.1
078
1.035 ) S
1.03 0760~ 0.1
(] 20 40 0 20 40 0 20 40

Figure 11.12.2: Elastic labor supply: response to unfore-
seen increase in 7, at t = 0. From left to right, top to bottom:
k,c,n, R,w, 1, . The dashed line is the original steady state.

» Labour is discouraged ~» the economy shrinks
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12. Elastic Labour supply

Foreseen permanent increase in 7,

0.9

08

07 0.2 0.4
0 0

0.4
108 _ 00
03
1.04
0.85 02
1.02
0.1
08
1 [
o 075~ 01
[ 20 40 0 20 40 0 20 40

Figure 11.12.3: Elastic labor supply: response to foreseen
increase in 7, at ¢ = 10. From left to right, top to bottom:
k,c,n, R,w, T, . The dashed line is the original steady state.

v

Long run effects are the same
But in the short run n, k ~ while c is flat

It is worth working more (an saving) while
labour is less taxed (before period 10)

The impact of unexpected vs expected tax
increase is in line with what is found in the
data.

MERTENS and RavN [2011], “Understanding
the Effects of Anticipated and Unanticipated
Tax Policy Shocks.” Review of Economic

Dynamics 14(1): 27-54. (Effect of tax cuts)

79/81



percent

percent

12. Elastic Labour supply
The Response to Tax Cuts in the US — Anticipated tax cuts are announced at date -6
and implemented at date 0 (MERTENS and RAVN [2011]

(a) Unanticipated Tax Cut (b) Anticipated Tax Cut (a) Unanticipated Tax Cut (b) Anticipated Tax Cut

Quiue - Investment Investment

percent
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