2023-2024 - Econ 0107 - Macroeconomics ILecture 4 : Fiscal Policies in a Growth Model

```
(Chapter 11 in LJunQvist & SARgENT)
```

Franck Portier

F.Portier@UCL.ac.uk

University College London

$$
\text { Version } 1.2
$$

$$
29 / 10 / 2023
$$

Changes from version 1.0 are in red

1. Introduction

- Complete market economy
- Time-0 trading
- Add production and taxes

2. The economy
2.1. Preferences, Technology, Information

- No uncertainty
- Representative household (hh)

$$
\begin{equation*}
\sum_{t=0}^{\infty} \beta^{t} U\left(c_{t}, 1-n_{t}\right) \tag{2.1}
\end{equation*}
$$

- Typically, in DSGEs:

$$
\begin{array}{ll}
\times & U=u(c)+v(1-n) \\
\times & U=\log c+\zeta \log (1-n) \\
\times & U=\log c+\zeta \times(1-n) \\
\times & U=u(c) \text { (fixed labor supply) }
\end{array}
$$

- Technology:

$$
\begin{gather*}
F\left(k_{t}, n_{t}\right) \geq g_{t}+c_{t}+x_{t} \tag{2.2.a}\\
k_{t+1}=(1-\delta) k_{t}+x_{t} \tag{2.2.b}
\end{gather*}
$$

$$
\begin{equation*}
g_{t}+c_{t}+k_{t+1} \leq F\left(k_{t}, n_{t}\right)+(1-\delta) k_{t} \tag{2.3}
\end{equation*}
$$

- F is a neoclassical production function: linearly homogenous of degree 1 : $F(\lambda k, \lambda n)=\lambda^{1} F(k, n)$
- Euler theorem: $F_{k} k+F_{n} n=\underbrace{\lambda}_{1} F$
- Example: $F=k^{\alpha} n^{1-\alpha}, 0<\alpha<1$
2.2. Components of a competitive equilibrium
- (Representative) Hh: owns capital, makes investment decisions, sells labour and capital services to the representative firm
- (Representative) Firm: rents labour and capital to produce final good
- price system $\left\{q_{t}, \eta_{t}, w_{t}\right\}$:
\times pre-tax prices
$\times q_{t}\left(\right.$ formerly denoted $\left.q_{t}^{0}\right)$: price of one unit of investment or consumption in t in units of time 0 numéraire.
$\times \quad \eta_{t}$: price of capital services in units of time t good
$\times w_{t}$: price of labour services in units of time t good

2.2. Components of a competitive equilibrium

Definition 1

A govt expenditure and tax plan that satisfies the govt budget constraint is budget-feasible

- Competitive equilibria are indexed by alternative budget-feasible govt policies
- Hh budget constraint:

$$
\begin{equation*}
\sum_{t=0}^{\infty} q_{t}\left(\left(1+\tau_{c t}\right) c_{t}+\left(k_{t+1}-(1-\delta) k_{t}\right)\right) \leq \sum_{t=0}^{\infty} q_{t}(\underbrace{\eta_{t} k_{t}-\tau_{k t}\left(\eta_{t}-\delta\right) k_{t}}_{\left(1-\tau_{k t}\right) \eta_{t} k_{t}+\tau_{k t} \delta k_{t}}+\left(1-\tau_{n t}\right) w_{t} n_{t}-\tau_{h t}) \tag{2.4}
\end{equation*}
$$

- Note: depreciation allowance δk_{t} from gross rentals on capital.
2.2. Components of a competitive equilibrium
- Govt budget constraint:

$$
\begin{equation*}
\sum_{t=0}^{\infty} q_{t} g_{t} \leq \sum_{t=0}^{\infty} q_{t}\left(\tau_{c t} c_{t}+\tau_{k t}\left(\eta_{t}-\delta\right) k_{t}+\tau_{n t} w_{t} n_{t}+\tau_{h t}\right) \tag{2.5}
\end{equation*}
$$

- Note: if the govt was optimising, it would use only lump sum taxe τ_{h}.

3. Term structure of interest rates

- $\left\{q_{t}\right\}_{t=0}^{\infty}$ encodes the term structure of interest rates

$$
q_{t}=q_{0} \frac{q_{1}}{q_{0}} \frac{q_{2}}{q_{1}} \cdots \frac{q_{t}}{q_{t-1}}=q_{0} m_{0,1} m_{1,2} \cdots m_{t-1, t}
$$

$m_{t, t+1}=\frac{q_{t+1}}{q_{t}}$ is the one-period discount factor between t and $t+1$

$$
m_{t, t+1}=R_{t, t+1}^{-1}=\frac{1}{1+r_{t, t+1}} \approx e^{-r_{t, t+1}}
$$

- We can write

$$
\begin{aligned}
q_{t} & =q_{0} e^{-r_{0,1}} e^{-r_{1,2} \cdots e^{-r_{t, t+1}}} \\
& =q_{0} e^{-\left(r_{0,1}+r_{1,2}+\cdots+r_{t-1, t}\right)} \\
& =q_{0} e^{-t r_{0, t}}
\end{aligned}
$$

with

$$
r_{0, t}=\frac{1}{t}\left(r_{0,1}+r_{1,2}+\cdots+r_{t-1, t}\right)
$$

3. Term structure of interest rates

- $q_{t}=q_{0} e^{-t r_{0, t}}$
- $r_{0, t}$ is the net t-period rate of interest between 0 and t.
- It is the yield to maturity on q zero coupon bon=d that matures at t.
- More generally, one can write

$$
r_{t, t+s}=\frac{1}{s}\left(r_{t, t+1}+r_{t+1, t+2}+\cdots+r_{t+s-1, t+s}\right)
$$

- From $s=1,2, \ldots$, we obtain the yield curve

Detour: Interpreting the slope of the yield curve

- Take the simple endowment economy

$$
\max \sum_{t} \beta^{t} \log c_{t} \quad \text { s.t. } \quad \sum_{t} q_{t} c_{t} \leq \sum_{t} q_{t} y_{t} \quad(\lambda)
$$

- First order condition (foc) is $\beta^{t} \frac{1}{c_{t}}=\lambda q_{t}$
- Ratio of foc in $t+s$ and t :

$$
\beta^{s} \frac{c_{t}}{c_{t+s}}=\frac{q_{t+s}}{q_{t}}=\frac{q_{0} e^{-(t+s) r_{0}, t+s}}{q_{0} e^{-(t) r_{0, t}}}=e^{-s r_{t, t+s}}
$$

- Take the log and rearrange:

$$
r_{t, t+s}=\gamma_{c_{t, t+s}}+\log \beta
$$

where $\gamma_{c_{t, t+s}}$ is the average per period growth rate of consumption between t and $t+s$

- Expecting lower growth in the future implies that $r_{t, t+s}$ decreases with s ("inversion of the yield curve is a predictor of recession)"

Detour: Interpreting the slope of the yield curve

Yield Curve Less Inverted, But Recession Warning Remains

Simon Moore Senior Contributor (1)
I show you how to save and invest.

US Treasury Yield Curve Rates

4. Sequential version of the govt budget constraint

- It is useful to describe the sequence of on-period public debt associated with the expenditures and tax revenues (but it is not needed to compute the equilibrium)
- Assume no govt debt when entering period 0 .
- Let T_{t} be the total tax revenues:

$$
T_{t}=\tau_{c t} c_{t}+\tau_{k t}\left(\eta_{t}-\delta\right) k_{t}+\tau_{n t} w_{t} n_{t}+\tau_{h t}
$$

The govt intertemporal budget constraint is

$$
\begin{equation*}
\sum_{t=0}^{\infty} q_{t}\left(g_{t}-T_{t}\right)=0 \tag{4.1}
\end{equation*}
$$

that can be rewritten as

$$
\underbrace{g_{0}-T_{0}}_{\text {current deficit }}=\underbrace{\sum_{t=1}^{\infty} \frac{q_{t}}{q_{0}}\left(T_{t}-g_{t}\right)}_{\text {discounted sum of future surpluses }}
$$

4. Sequential version of the govt budget constraint

- in a sequential world, one can think of period 0 deficit as being financed by debt B_{0} :

$$
B_{0}=g_{0}-T_{0}
$$

- Therefore (\star) implies

$$
B_{0}=\sum_{t=1}^{\infty} \frac{q_{t}}{q_{0}}\left(T_{t}-g_{t}\right)
$$

or

$$
\underbrace{\frac{q_{0}}{q_{1}}}_{R_{0,1}} B_{0}=T_{1}-g_{1}+\underbrace{\sum_{t=2}^{\infty} \frac{q_{t}}{q_{1}}\left(T_{t}-g_{t}\right)}_{B_{1}}
$$

or equivalently

$$
g_{1}+R_{0,1} B_{0}=T_{1}+B_{1}
$$

4. Sequential version of the govt budget constraint

- In period t, we will have

$$
g_{t}+R_{t-1, t} B_{t-1}=T_{t}+B_{t}
$$

or

$$
\begin{equation*}
\underbrace{B_{t}-B_{t-1}}_{\mathrm{w} \text { debt issuance }}=\underbrace{g_{t}-T_{t}}_{\text {primary deficit }}+\underbrace{r_{t-1, t} B_{t-1}}_{\text {net interest payments }} \tag{4.4}
\end{equation*}
$$

- The Arrow-Debreu budget constraint (4.1) ensures the no-Ponzi scheme (transversality) condition

$$
\lim _{t \rightarrow \infty} q_{t} B_{t+1}=0
$$

4. Sequential version of the govt budget constraint

- Note:
\times There is no loss of generality in considering only one-period debt
\times The maturity structure of govt debt is irrelevant.

5. Competitive equilibrium with distorting taxes

- Hh chooses $\left\{c_{t}, n_{t}, k_{t+1}\right\}$ for $t=0, \ldots$ to $\max U$ s.t. the budget constraint
- Firm chooses $\left\{k_{t}, n_{t}\right\}$ for $t=0, \ldots$ to \max firm value V_{0}

$$
V_{0}=\sum_{t=0}^{\infty} q_{t} \underbrace{\left(F\left(k_{t}, n_{t}\right)-\eta_{t} k_{t}-w_{t} n_{t}\right)}_{\text {profit of period } t}
$$

- A budget-feasible policy is an expenditure plan $\left\{g_{t}\right\}$ and a tax plan $\left\{\tau_{c t}, \tau_{n t}, \tau_{k t}, \tau_{h t}\right\}$ that satisfies the govt budget constraint.

5. Competitive equilibrium with distorting taxes

Definition 1

A competitive equilibrium with distorting taxes is

- a budget-feasible allocation
- a feasible allocation
- a price system
such that, given the price system and the govt policy
- the allocation solves the hh problem
- the allocation solves the firm problem
5.1. The hh: no-arbitrage condition and asset-pricing formula
- The hh intertemporal budget constraint (ibc) is

$$
\begin{equation*}
\sum_{t=0}^{\infty} q_{t}\left(\left(1+\tau_{c t}\right) c_{t}+\left(k_{t+1}-(1-\delta) k_{t}\right)\right) \leq \sum_{t=0}^{\infty} q_{t}\left(\eta_{t} k_{t}-\tau_{k t}\left(\eta_{t}-\delta\right) k_{t}+\left(1-\tau_{n t}\right) w_{t} n_{t}-\tau_{h t}\right) \tag{2.4}
\end{equation*}
$$

- Rewrite the terms in blue as follows (on the right-hand side of the $i b c$)
\times terms in k_{0} :

$$
q_{0}(1-\delta)+q_{0} \eta_{0}-q_{0} \tau_{k 0}\left(\eta_{0}-\delta\right)=\left(\left(1-\tau_{k 0}\right)\left(\eta_{0}-\delta\right)+1\right) q_{0}
$$

\times terms in k_{t} :

$$
-q_{t-1}+q_{t}(1-\delta)+q_{t} \eta_{t}-q_{t} \tau_{k t}\left(\eta_{t}-\delta\right)=\underbrace{\left(\left(1-\tau_{k t}\right)\left(\eta_{t}-\delta\right)+1\right) q_{t}}_{\text {return on capital }}-\underbrace{q_{t-1}}_{\text {cost of capital }}
$$

5.1. The hh: no-arbitrage condition and asset-pricing formula

- Therefore, the budget constraint rewrites

$$
\begin{align*}
\sum_{t=0}^{\infty} q_{t}\left(1+\tau_{c t}\right) c_{t} \leq & \sum_{t=0}^{\infty} q_{t}\left(1-\tau_{n t}\right) w_{t} n_{t}-\sum_{t=0}^{\infty} q_{t} \tau_{h t} \\
& +\sum_{t=0}^{\infty}\left(\left(\left(1-\tau_{k t}\right)\left(\eta_{t}-\delta\right)+1\right) q_{t}-q_{t-1}\right) k_{t} \\
& +\left(\left(1-\tau_{k 0}\right)\left(\eta_{0}-\delta\right)+1\right) q_{0} k_{0} \\
& -\lim _{T \rightarrow \infty} q_{T} k_{T+1} \tag{5.1}
\end{align*}
$$

- Hh would be happy to have the highest possible right-hand side of (5.1)
- But this rhs must be bounded in equilibrium (because resources are finite) \rightsquigarrow this is putting restictions on equilibrium prices.
5.1. The hh: no-arbitrage condition and asset-pricing formula
- Take the term in $k_{t}: \rho_{t}=\left(\left(\left(1-\tau_{k t}\right)\left(\eta_{t}-\delta\right)+1\right) q_{t}-q_{t-1}\right)$
\times if $\rho_{t}>0$: hh can:
- buy in $t-1$ arbitrarily large k_{t} with present value $q_{t-1} k_{t}$
- sell in t rental services and undepreciated part to obtain a present value income of $\left(\left(\left(1-\tau_{k t}\right)\left(\eta_{t}-\delta\right)+1\right) q_{t}\right) k_{t}$
- as $\rho_{t}>0$, thus gives an arbitrarily large benefit
- the rhs of (5.1) would then be unbounded \rightsquigarrow not an equilibrium.
\times if $\rho_{t}<0$: hh can does the reverse:
\checkmark short-sell in $t-1$ at price q_{t-1}
- deliver in t buy buying at price $\left(\left(1-\tau_{k t}\right)\left(\eta_{t}-\delta\right)+1\right) q_{t}$
- again, the rhs of (5.1) would be unbounded \rightsquigarrow not an equilibrium
- Therefore, by no-arbitrage

$$
\begin{equation*}
\frac{q_{t}}{q_{t+1}}=\left(1-\tau_{k t+1}\right)\left(\eta_{t+1}-\delta\right)+1 \quad \forall t \geq 0 \tag{5.2}
\end{equation*}
$$

- and no possibility to short-shell at $+\infty$:

$$
\lim _{T \rightarrow \infty} q_{T} k_{T+1}=0
$$

5.2. User cost of capital

- Rewriting (5.2):

$$
\begin{equation*}
\underbrace{\eta_{t+1}}_{\text {user cost of capital }}=\underbrace{\delta}_{\text {depreciation }}+\underbrace{\left(\frac{1}{1-\tau_{k t+1}}\right)}_{\text {taxes }} \underbrace{\left(\frac{q_{t}}{q_{t+1}}-1\right)}_{\text {capital gains or losses }} \tag{5.4}
\end{equation*}
$$

5.3. $\mathrm{Hh} f o c$

$$
\max \mathcal{L}=\sum_{t=0}^{\infty} \beta^{t} U\left(c_{t}, 1-n_{t}\right)+\mu i b c
$$

- Hh are indifferent about the level of k_{t} as long as the no-arbitrage condition holds
- foc for c_{t} and n_{t} :

$$
\begin{aligned}
& \beta^{t} U_{1 t}=\mu q_{t}\left(1+\tau_{c t}\right) \\
& \beta^{t} U_{2 t}=\mu w_{t}\left(1-\tau_{n t}\right)
\end{aligned}
$$

assuming an interior solution $n_{t}<1$.

- We see that only μq_{t} matters, not μ and q_{t} separately \rightsquigarrow once can choose a numéraire, or can arbitrarily normalize $\mu=1$
5.4. A theory of the term structure of interest rates
- Assume $U\left(c_{t}, 1-n_{t}\right)=u\left(c_{t}\right)+v\left(1-n_{t}\right)$
- foc wrt to c_{t} :

$$
\mu q_{t}=\beta^{t} \frac{u^{\prime}\left(c_{t}\right)}{1+\tau_{c t}}
$$

- $\left\{q_{t}\right\}$ and therefore the term structure can be computed if we observe $\left\{c_{t}\right\} \rightsquigarrow$ CCAPM
- Govt policy $\left\{g_{t,} \tau_{c t}, \tau_{n t}, \tau_{k t}, \tau_{h t}\right\}$ affects equilibrium $\left\{c_{t}\right\}$, and therefore the term structure.

5.5. Firms

- Firm value is

$$
V_{0}=\sum_{t=0}^{\infty} q_{t}\left(F\left(k_{t}, n_{t}\right)-w_{t} n_{t}-\eta_{t} k_{t}\right)
$$

- Because of homegeneity of degree 1 (Euler theorem):

$$
V_{0}=\sum_{t=0}^{\infty} q_{t}\left(\left(F_{n t}-w_{t}\right) n_{t}+\left(F_{k t}-\eta_{t}\right) k_{t}\right)
$$

- By no-arbitrage:

$$
\begin{align*}
& \eta_{t}=F_{k t} \\
& w_{t}=F_{n t} \tag{5.7}
\end{align*}
$$

6. Computing equilibria
$\vee\left\{g_{t}, \tau_{t}\right\}=\left\{g_{t}, \tau_{c t}, \tau_{n t}, \tau_{k t}\right\}$ is exogenous

- $\sum_{t=0}^{\infty} q_{t} \tau_{h t}$ is endogenous and makes sure that the govt intertemporally balances its budget.

6.1. Inelastic labor supply

- assume $U(c, 1-n)=u(c)$ and hh inelastically supply $n=1$ (normalization)
- Define $f(k)=F(k, 1)$
- Feasibility writes

$$
\begin{equation*}
k_{t+1}=(1-\delta) k_{t}+f\left(k_{t}\right)-g_{t}-c_{t} \tag{6.1}
\end{equation*}
$$

- Note that $F(k, n)=n F(k / n, 1)=n f(\widehat{k})$ with $k / n=\widehat{k})$
- One then has:

$$
F_{k}=\frac{\partial[n F(k / n, 1)]}{\partial k}=n \times \frac{1}{n} \times \frac{\partial F(k / n, 1)}{\partial(k / n)}=f^{\prime}(\widehat{k})
$$

and

$$
F_{n}=\frac{\partial[n F(k / n, 1)]}{\partial n}=n \times \frac{-k}{n^{2}} \times \frac{\partial F(k / n, 1)}{\partial(k / n)}+F(k / n, 1)=f(\widehat{k})-\widehat{k} f^{\prime}(\widehat{k})
$$

- and when $n=1, F_{k}=f^{\prime}(k)$ and $F_{n}=f(k)-k f^{\prime}(k)$

6. Computing equilibria

Some substitutions

- Take resource constraint

$$
k_{t+1}=(1-\delta) k_{t}-g_{t}-c_{t}
$$

- Obtain c_{t} and replace in the foc

$$
\beta^{t} u^{\prime}\left(c_{t}\right)=\mu q_{t}\left(1+\tau_{c t}\right)
$$

- Obtain q_{t} and q_{t+1} and replace in the no-arbitrage condition

$$
\frac{q_{t}}{q_{t+1}}=\left(1-\tau_{k t+1}\right)\left(\eta_{t+1} \not \delta \delta\right)+1
$$

where η_{t+1} is replaced using the no-arbitrage condition $\eta_{t}=F_{k t}$

- We then obtain a nonlinear second order difference equation in k_{t}

6. Computing equilibria

A second order difference equation

$$
\begin{align*}
\frac{u^{\prime}\left(f\left(k_{t}+(1-\delta) k_{t}-g_{t}-k_{t+1}\right)\right.}{\left(1-\tau_{c t}\right)} & -\beta \frac{u^{\prime}\left(f\left(k_{t+1}+(1-\delta) k_{t+1}-g_{t+1}-k_{t+2}\right)\right.}{\left(1-\tau_{c t+1}\right)} \\
& \times\left(\left(1-\tau_{k t+1}\right)\left(f^{\prime}\left(k_{t+1}\right)-\delta\right)+1\right) \\
& =0 \tag{6.2}
\end{align*}
$$

- initial condition k_{0}
- terminal condition $\lim _{T \rightarrow \infty} q_{T} k_{T+1}=0$
- for given gvt policy
- (6.2) can be rewritten as

$$
\begin{equation*}
\left.u^{\prime}\left(c_{t}\right)\right)=\beta u^{\prime}\left(c_{t+1}\right) \frac{\left(1-\tau_{c t}\right)}{\left(1-\tau_{c t+1}\right.}\left(\left(1-\tau_{k t+1}\right)\left(f^{\prime}\left(k_{t+1}\right)-\delta\right)+1\right) \tag{6.3}
\end{equation*}
$$

6.2. Equilibrium steady state

- Let $z_{t}=\left\{g_{t}, \tau_{k t}, \tau_{c t}\right\}$ be the sequence of exogenous variables
- (6.2) can be written as

$$
\begin{equation*}
H\left(k_{t}, k_{t+1}, k_{t+2}, z_{t}, z_{t+1}\right)=0 \tag{6.4}
\end{equation*}
$$

- For the steady state to be relevant, we look at cases where

$$
\begin{equation*}
\lim _{t \rightarrow \infty} z_{t}=\bar{z} \tag{6.5}
\end{equation*}
$$

- At the steady state, we have

$$
\begin{equation*}
H(\bar{k}, \bar{k}, \bar{k}, \bar{z}, \bar{z})=0 \tag{6.6}
\end{equation*}
$$

6.2. Equilibrium steady state

- (6.3) writes at the steady state

$$
u^{\prime}(\bar{c})=\beta u^{\prime}(\bar{c}) \frac{\left(1-\bar{\tau}_{c}\right)}{\left(1-\bar{\tau}_{c}\right)}\left(\left(1-\bar{\tau}_{k}\right)\left(f^{\prime}(\bar{k})-\delta\right)+1\right)
$$

which gives

$$
\begin{equation*}
1=\beta\left(\left(1-\bar{\tau}_{k}\right)\left(f^{\prime}(\bar{k})-\delta\right)+1\right) \tag{6.3b}
\end{equation*}
$$

- Note: $\bar{\tau}_{c}$ does not distort \bar{k}
- With $\frac{1}{\beta}=1+\rho$, steady state capital is pinned down by

$$
f^{\prime}(\bar{k})=\delta+\frac{\rho}{1-\bar{\tau}_{k}}
$$

6.3. Computing the equilibrium path with the shooting algorithm

- We want to solve the below difference equation system:

$$
\begin{align*}
& u^{\prime}\left(c_{t}\right)=\beta u^{\prime}\left(c_{t+1}\right) \frac{\left(1-\tau_{c t}\right)}{\left(1-\tau_{c t+1}\right)}\left(\left(1-\tau_{k t+1}\right)\left(f^{\prime}\left(k_{t+1}\right)-\delta\right)+1\right) \quad \text { (Euler equation) } \\
& k_{t+1}=(1-\delta) k_{t}-g_{t}-c_{t} \tag{6.8a}
\end{align*}
$$

with boundary conditions

$$
\left\{\begin{array}{l}
k_{0} \text { given } \\
\lim _{T \rightarrow \infty} \beta^{T} \frac{u^{\prime}\left(c_{T}\right)}{\left(1+\tau_{c T}\right)} k_{T+1}
\end{array}\right.
$$

where we have used $\beta^{T} u^{\prime}\left(c_{T}\right)=\mu q_{t}\left(1+\tau_{c t}\right)$

- Shooting algorithm:
\times Take terminal period S large but finite
\times Impose $k_{s} \approx \bar{k}$
\times For given c_{0}, iterate the difference system forward starting from (k_{0}, c_{0}) and compute k_{s}
\times Try many values of c_{0}
\times Solution is found for the c_{0} such that $k_{S} \approx \bar{k}$

6.3. Computing the equilibrium path with the shooting algorithm

- Once this is done, find $\left\{\tau_{h t}\right\}$ such that the govt budget constraint is satisfied
- Then compute prices using

$$
\begin{align*}
q_{t} & =\beta^{t} \frac{u^{\prime}\left(c_{t}\right)}{u^{\prime}\left(c_{t+1}\right)} \tag{6.8b}\\
\eta_{t} & =f^{\prime}\left(k_{t}\right) \tag{6.8c}\\
w_{t} & =f\left(k_{t}\right)-k_{t} f^{\prime}\left(k_{t}\right) \tag{6.8d}\\
\bar{R}_{t+1} & =\frac{1+\tau_{c t}}{1+\tau_{c t+1}}\left(\left(1-\tau_{k t+1}\right)\left(\left(f^{\prime}\left(k_{t+1}\right)-\delta\right)+1\right)\right. \tag{6.8e}\\
& =\frac{1+\tau_{c t}}{1+\tau_{c t+1}} R_{t, t+1} \\
R_{t, t+1}^{-1} & =m_{t, t+1}=\beta \frac{u^{\prime}\left(c_{t}\right)}{u^{\prime}\left(c_{t+1}\right)} \frac{1+\tau_{c t}}{1+\tau_{c t+1}} \tag{6.8f}\\
r_{t, t+1} & =R_{t, t+1}-1=\left(1-\tau_{k t+1}\right)\left(f^{\prime}\left(k_{t+1}\right)-\delta\right) \tag{6.8g}\\
u^{\prime}\left(c_{t}\right) & =\beta u^{\prime}\left(c_{t+1}\right) \bar{R}_{t+1} \tag{6.8h}
\end{align*}
$$

6.3. Computing the equilibrium path with the shooting algorithm

- if $u(c)=\frac{c^{1-\gamma}}{1-\gamma}$, then (6.8h) becomes

$$
\begin{equation*}
\log \frac{c_{t+1}}{c_{t}}=\gamma^{-1} \log \beta+\gamma^{-1} \log \bar{R}_{t+1} \tag{6.9}
\end{equation*}
$$

- (6.9): consumption growth varies with distorted real interest rate.
6.6. When lump-sum taxes are available
- What we have just done is to implement the shooting algorithm taking as given $\left\{g_{t}, \tau_{c t}, \tau_{n t}, \tau_{k t}\right\}$.
- Then, once prices and quantities are obtained, $\left\{\tau_{h t}\right\}$ is set such that $\sum_{t=0}^{\infty} q_{t} \tau_{h t}$ balances the govt budget constraint.
- We can do this two-step computation because $\left\{\tau_{h t}\right\}$ are nowhere in equations (6.8)
- The timing of $\left\{\tau_{h t}\right\}$ is irrelevant \rightsquigarrow Ricardian equivalence
6.7. When no lump-sum taxes are available
- Then, an additional step is needed in the algorithm: making sure that the govt budget constraint is satisfied.
- Algorithm given a sequence of $\left\{g_{t}\right\}$:
\times Assume sequence of taxes $\left\{\tau_{c t}, \tau_{n t}, \tau_{k t}\right\}$
\times solve for the equilibrium using the shooting algorithm
\times check if the budget constraint of the govt is satisfied
\times If not, adjust taxes and repeat.

8. Effect of taxes on equilibrium allocations and prices

- τ_{c}, τ_{n} and τ_{k} are distortionary, meaning that hh can affect their tax payments by altering their decisions.
- τ_{h} is non distortionary.
8.1. Lump-sum taxes and Ricardian equivalence
- Suppose $\tau_{c}=0, \tau_{n}=0$ and $\tau_{k}=0 \rightsquigarrow \tau_{h}$ does not enter anywhere in (6.8)
- The timing of $\left\{\tau_{h t}\right\}$ is irrelevant, only $\sum q_{t} \tau_{h t}$ matters in govt and hh intertemporal budget constraints.
- This is Ricardian equivalence
8.2. When labour supply is inelastic
- τ_{n} is not distorting
- Constant τ_{c} is not distorting
- Variations in τ_{c} are distorting
- Capital taxation τ_{k} is distorting

9. Transition experiments with inelastic labour supply

- Assume

$$
\begin{aligned}
& \times \quad U(c, 1-n)=u(c)=\frac{c^{1-\gamma}}{1-\gamma}, f(k)=k^{\alpha} \\
& \times \quad \alpha=1 / 3, \delta=0.2, \beta=.95, g=0.2 \\
& \times \gamma=2 \text { or } \gamma=0.2
\end{aligned}
$$

- First we do a foreseen once-for-all increase in g, τ_{c}, τ_{k}
- The change is announced a $t=0$ and takes place at $t=10$, and the economy was at the steady state before 0 .
- Although no change is implemented before $t=10$, the economy reacts on impact
- Why? Because hh wants to smooth consumption \rightsquigarrow they adjust their savings from period 0 and onwards \rightsquigarrow prices and quantities move at time 0 .
- Two forces are at play in the dynamics:
\times discounting of the future before T
\times transient dynamics after T
and these two forces are interrelated (see later)

9. Transition experiments with inelastic labour supply

Foreseen permanent increase in g

Figure 11.9.1: Response to foreseen once-and-for-all increase in g at $t=10$. From left to right, top to bottom: k, c, \bar{R}, η, g. The dashed line is the original steady state.

- The steady state level of k is unaffected (see (6.3b))
- $g \nearrow \rightsquigarrow c \searrow$
- from 0 to 10: $c \searrow \rightsquigarrow k \nearrow$ (because $g \rightarrow$)
- Initial negative wealth effect of c (because $\left.\sum q_{t} \tau_{h t} \nearrow\right)$
- The dynamics of \bar{R} makes the hh choosing a non flat c profile.
- Both feedforward and feedback dimension in the response of the economy (more on this later)

9. Transition experiments with inelastic labour supply

Foreseen permanent increase in $g, \gamma=2$ or 0.2

Figure 11.9.2: Response to foreseen once-and-for-all increase in g at $t=10$. From left to right, top to bottom: k, c, \bar{R}, η, g. The dashed lines show the original steady state. The solid lines are for $\gamma=2$, while the dashed-dotted lines are for $\gamma=.2$

- More willingness to smooth consumption when $\gamma=2$ as compared to when $\gamma=0.2$
- When γ is small (the limit would be linear utility), c becomes the mirror image of g
- Less feedforward and less feedback effect \rightsquigarrow the two dimensions are related (see later)

9. Transition experiments with inelastic labour supply

Foreseen permanent increase in g, asset prices

Figure 11.9.3: Response to foreseen once-and-for-all increase in g at $t=10$. From left to right, top to bottom: $c, q, r_{t, t+1}$ and yield curves $r_{t, t+s}$ for $t=0$ (solid line), $t=10$ (dash-dotted line) and $t=60$ (dashed line); term to maturity s is on the x axis for the yield curve, time t for the other panels.

- $q_{t}=\beta^{t} c_{t}^{-\gamma}$
- Short rate $r_{t, t+1}=-\log \beta\left(\frac{c_{t+1}}{c_{t}}\right)^{-\gamma}$
- q_{t} : price of future consumption is higher in the future (when g is higher)
- Term structure at 10 periods: upward sloping because the growth rate of c is expected to increase (to be less negative)
- Term structure at time 0 is U shaped.

9. Transition experiments with inelastic labour supply

Foreseen permanent increase in τ_{c}

Figure 11.9.4: Response to foreseen once-and-for-all increase in τ_{c} at $t=10$. From left to right, top to bottom: $k, c, \bar{R}, \eta, \tau_{c}$.
$\left.>u^{\prime}\left(c_{t}\right)\right)=\beta u^{\prime}\left(c_{t+1}\right) \frac{\left(1-\tau_{c t}\right)}{\left(1-\tau_{c t+1}\right.}\left(\left(1-\tau_{k t+1}\right)\left(f^{\prime}\left(k_{t+1}\right)-\delta\right)+1\right)$

- Anticipated decrease in $\frac{\left(1-\tau_{c t}\right)}{\left(1-\tau_{c t+1}\right.} \equiv$ anticipated increase in τ_{k}, as seen in (6.3)
- The hh frontloads consumption, by $\searrow c$
- No effect on the steady state
- After T, no more anticipation effect \rightsquigarrow transient dynamics when starting with low k

9. Transition experiments with inelastic labour supply

Foreseen permanent increase in τ_{k}

Figure 11.9.5: Response to foreseen increase in τ_{k} at $t=$ 10. From left to right, top to bottom: $k, c, \bar{R}, \eta, \tau_{k}$. The solid lines depict equilibrium outcomes when $\gamma=2$, the dasheddotted lines when $\gamma=.2$.

- Lower final steady state \rightsquigarrow some capital can be eaten in the transition $\rightsquigarrow c \nearrow$ before period 10 .
- After 10, transient dynamics from a higher that steady state stock of capital.

9. Transition experiments with inelastic labour supply

One time impulse g_{10}

Figure 11.9.6: Response to foreseen one-time pulse increase in g at $t=10$. From left to right, top to bottom: k, c, \bar{R}, η, g.

- Again, the anticipation effect is at play before 10
- Desire to smooth c
- in 10, govt takes out some good for g, but c stays smooth \rightsquigarrow investment adjusts by \searrow.

10. Linear approximation

- Shooting algorithm can be tricky in larger models
- Useful to look at the solution of a linear approximation (one can also do log-linear)
- idea: Assume the model is

$$
k_{t+1}=\varphi\left(k_{t}\right)
$$

- The steady state is $\bar{k}=\varphi(\bar{k})$
- Linear approximation:

$$
\left(k_{t+1}-\bar{k}\right) \approx \varphi^{\prime}(\bar{k})\left(k_{t}-\bar{k}\right)
$$

10. Linear approximation

11. Linear approximation

10. Linear approximation

Solution

- Let's show an important result: the model solution can be partitioned into a feedback and an feedforward part.
- Model is

$$
H\left(k_{t}, k_{t+1}, k_{t+2}, z_{t}, z_{t+1}\right)=0
$$

- The steady state is given by

$$
H(\bar{k}, \bar{k}, \bar{k}, \bar{z}, \bar{z})=0
$$

- Linear approximation is

$$
\begin{align*}
& H_{k_{t}} \times\left(k_{t}-\bar{k}\right)+H_{k_{t+1}} \times\left(k_{t+1}-\bar{k}\right)+H_{k_{t+2}} \times\left(k_{t+2}-\bar{k}\right) \\
& +H_{z_{t}} \times\left(z_{t}-\bar{z}\right)+H_{z_{t+1}} \times\left(z_{t+1}-\bar{z}\right) \tag{10.1}\\
& =0
\end{align*}
$$

with $H_{k_{t}}=H_{k_{t}}(\bar{k}, \bar{k}, \bar{k}, \bar{z}, \bar{z}), \ldots$
10. Linear approximation

Solution

- Rewrite (10.1) as

$$
\begin{equation*}
\phi_{0} k_{t+2}+\phi_{1} k_{t+1}+\phi_{2} k_{t}=A_{0}+A_{1} z_{t}+A_{2} z_{t+1} \tag{10.2}
\end{equation*}
$$

or

$$
\begin{equation*}
\phi(L) k_{t+2}=A_{0}+A_{1} z_{t}+A_{2} z_{t+1} \tag{10.3}
\end{equation*}
$$

- We want to solve this equation, i.e. find k_{t+1} as a function of past endogenous variables $\left(k_{t-j}\right)$ and exogenous variables z (past, present or future as there is here no uncertainty)
- To do so, we will manipulate and transform the characteristic polynomial $\phi(L)=\phi_{0}+\phi_{1} L+\phi_{2} L^{2}$
- Let $\mu_{1,2}$ be the two roots of ϕ (the solutions to $\phi(L)=0$). Assume they are non-zero, real and distinct (can be proved in some environments)
- We have $\phi(L)=\phi_{2}\left(\mu_{1}-L\right)\left(\mu_{2}-L\right)$ and $\mu_{1} \mu_{2}=\phi_{0} / \phi_{2}$.

10. Linear approximation

Solution

Write $\mu_{i}-L=\mu_{i}\left(1-\frac{1}{\mu_{i}} L\right)$ so that $\phi(L)$ can be written

$$
\underbrace{\phi_{2} \mu_{1} \mu_{2}}_{\phi_{0}}\left(1-\frac{1}{\mu_{1}} L\right)\left(1-\frac{1}{\mu_{2}} L\right)
$$

Denote $\lambda_{i}=\frac{1}{\mu_{i}}$ to obtain

$$
\phi(L)=\phi_{0}\left(1-\lambda_{1} L\right)\left(1-\lambda_{2} L\right)
$$

- Let's assume (more on this later) that $\left|\lambda_{1}\right|>1,\left|\lambda_{2}\right|<1$

10. Linear approximation

Solution

- Because $\left|\lambda_{1}\right|>1$,

$$
\left(1-\lambda_{1} L\right)^{-1}=\sum_{j=0}^{\infty} \lambda_{1}^{j} L^{j} \quad \text { diverges }
$$

- We can flip this infinite sum:

$$
\left(1-\lambda_{1} L\right)=-\lambda_{1} L\left(1-\lambda_{1}^{-1} L^{-1}\right)
$$

and

$$
\left(1-\lambda_{1}^{-1} L^{-1}\right)^{-1}=\sum_{j=0}^{\infty} \lambda_{1}^{-j} L^{-j} \quad \text { converges }
$$

- Recall that $L^{-1} x_{t}=x_{t+1}$
- $\sum_{j=0}^{\infty} \lambda_{1}^{-j} L^{-j}$ is a forward looking term, which corresponds to a discounted sum of future values, with discounting at rate λ_{1}^{-1}

10. Linear approximation

Solution

- We can then rewrite $\phi(L)$ as follows:

$$
\begin{aligned}
\phi(L) & =\phi_{0}\left(1-\lambda_{1} L\right)\left(1-\lambda_{2} L\right) \\
& =\phi_{0}\left(-\lambda_{1} L\right)\left(1-\lambda_{1}^{-1} L^{-1}\right)\left(1-\lambda_{2} L\right)
\end{aligned}
$$

\Rightarrow and using $\phi_{2}=\lambda_{1} \lambda_{2} \phi_{0}$:

$$
\phi(L)=\frac{-\phi_{2}}{\lambda_{2}} L\left(1-\lambda_{1}^{-1} L^{-1}\right)\left(1-\lambda_{2} L\right)
$$

so that (10.3)

$$
\begin{equation*}
\phi(L) k_{t+2}=A_{0}+A_{1} z_{t}+A_{2} z_{t+1} \tag{10.3}
\end{equation*}
$$

writes

$$
\begin{equation*}
\frac{-\phi_{2}}{\lambda_{2}}\left(1-\lambda_{1}^{-1} L^{-1}\right)\left(1-\lambda_{2} L\right) L k_{t+2}=A_{0}+A_{1} z_{t}+A_{2} z_{t+1} \tag{10.6}
\end{equation*}
$$

10. Linear approximation

Solution

$$
\frac{-\phi_{2}}{\lambda_{2}}\left(1-\lambda_{1}^{-1} L^{-1}\right)\left(1-\lambda_{2} L\right) L k_{t+2}=A_{0}+A_{1} z_{t}+A_{2} z_{t+1}
$$

- Put the blue term on the right-hand side of the equation:

$$
\underbrace{\left(1-\lambda_{2} L\right) k_{t+1}}_{\begin{array}{l}
\text { ransient dynamics, } \tag{10.7}\\
\text { feedback", } \\
\text { backward looking" }
\end{array}}=\underbrace{\frac{-\lambda_{2} \phi_{2}^{-1}}{\left(1-\lambda_{1}^{-1} L^{-1}\right)} A_{0}+A_{1} z_{t}+A_{2} z_{t+1}}_{\begin{array}{c}
\text { Expectational dynamics, } \\
\text { "feedforward", } \\
\text { "forward looking" }
\end{array}}
$$

10. Linear approximation

Solution

- (10.7) can be more explicitly written as

$$
\begin{equation*}
k_{t+1}=\lambda_{2} k_{t}-\lambda_{2} \phi_{2}^{-1} \sum_{j=0}^{\infty}\left(\lambda_{1}\right)^{-j}\left[A_{0}+A_{1} z_{t+j}+A_{2} z_{t+j+1}\right] \tag{10.8}
\end{equation*}
$$

- $\left(\lambda_{1}\right)^{-j}$ is the rate at which expectations about the future are discounted
- The derivation relies on the fact that $\left|\lambda_{1}\right|>1$ and $\left|\lambda_{2}\right|<1$.
- Whether this is true or not depends on the economic environment.
- It is true in the neoclassical growth model we are working with.

10. Linear approximation

Relation with the shooting algorithm

- k_{0} is given
- In the linearized model, k_{1} (or equivalently c_{0}) is chosen looking at the whole future.
- It corresponds in the shooting algorithm to the choice of the c_{0} such that $k_{s}=\bar{k}$ after S periods, i.e. in the future
10.1. Relation between the $\lambda_{i} \mathrm{~s}$
- When $\left\{g_{t}, \tau_{t}\right\}=0 \forall t$, one can prove (a bit long) that

$$
\lambda_{1} \lambda_{2}=1 / \beta
$$

and that

$$
\left|\lambda_{1}\right|>1 / \sqrt{\beta}
$$

and

$$
\left|\lambda_{2}\right|<1 / \sqrt{\beta}
$$

10.2. Existence and uniqueness of the equilibrium dynamics

- When $\left|\lambda_{1}\right|>1$ and $\left|\lambda_{2}\right|<1$, we have existence and uniqueness of the equilibrium dynamics
- This is a case in which for given k_{0}, there is a unique c_{0} that satisfies non explosion.
- This is what we call saddle-path stability
- There are as many roots on the unit disc as predetermined variables $=$ Blanchard-Kahn [1980] condition
10.2. Existence and uniqueness of the equilibrium dynamics Saddle Path Stability

10.2. Existence and uniqueness of the equilibrium dynamics Instability
- When $\left|\lambda_{1}\right|>1$ and $\left|\lambda_{2}\right|>1$, the model becomes explosive.
- One would need k_{0} to jump to \bar{k}, but this is not possible as k_{0} is predetermined.
- The economy will explode and at some point will violate resource constraint or positivity of c and k.
- The equilibrium does not exist.
10.2. Existence and uniqueness of the equilibrium dynamics Instability

10.2. Existence and uniqueness of the equilibrium dynamics

Indeterminacy

- When $\left|\lambda_{1}\right|<1$ and $\left|\lambda_{2}\right|<1$, the model is indeterminate: there is a continuum of paths that converge to the steady state.
- Given k_{0}, any c_{0} id admissible.
- There are sunspot equilibria: if the economy believes that it should start from some \widetilde{c}_{0}, this is an equilibrium, and many \widetilde{c}_{0} are admissible.
10.2. Existence and uniqueness of the equilibrium dynamics Indeterminacy

10.3. Once-and-for-all jumps

- Given the above algebra, we can write the full approximate solution following a once-and-for-all jump in one forcing variable.
- Assume that the economy is initially at the steady state, that we normalize to $\bar{k}=\bar{z}=0$
- Assume z is of dimension 1 .
- The shock is :

$$
z_{t}= \begin{cases}0 & \text { if } t \leq T-1 \\ \widetilde{z} & \text { if } t \geq T-1\end{cases}
$$

10.3. Once-and-for-all jumps

- Define:

$$
\begin{gather*}
v_{t}=\sum_{i=0}^{\infty} \lambda_{1}^{-i} z_{t+i}= \begin{cases}\left(\frac{1}{\lambda_{1}}\right)^{T-t} \frac{1}{1-\left(\frac{1}{\lambda_{1}}\right)} \widetilde{z} & \text { if } t \leq T-1 \\
\frac{1}{1-\left(\frac{1}{\lambda_{1}}\right)} \widetilde{z} & \text { if } t \geq T-1\end{cases} \tag{10.10}\\
h_{t}=\sum_{i=0}^{\infty} \lambda_{1}^{-i} z_{t+i+1}= \begin{cases}\left(\frac{1}{\lambda_{1}}\right)^{T-(t+1)} \frac{1}{1-\left(\frac{1}{\lambda_{1}}\right)} \widetilde{z} & \text { if } t \leq T-1 \\
\frac{1}{1-\left(\frac{1}{\lambda_{1}}\right)} \widetilde{z} & \text { if } t \geq T-1\end{cases} \tag{10.11}
\end{gather*}
$$

10.3. Once-and-for-all jumps

- Then using

$$
\begin{equation*}
k_{t+1}=\lambda_{2} k_{t}-\lambda_{2} \phi_{2}^{-1} \sum_{j=0}^{\infty}\left(\lambda_{1}\right)^{-j}\left[A_{0}+A_{1} z_{t+j}+A_{2} z_{t+j+1}\right] \tag{10.8}
\end{equation*}
$$

we obtain the solution

$$
k_{t+1}= \begin{cases}\lambda_{2} k_{t}-\frac{\left(\phi_{0} \lambda_{1}\right)^{-1} A_{0}}{1-\frac{1}{\lambda_{1}}}-\frac{\left(\phi_{0} \lambda_{1}\right)^{-1}\left(\frac{1}{\lambda_{1}}\right)^{T-t}}{1-\frac{1}{\lambda_{1}}}\left(A_{1}+A_{2} \lambda_{2}\right) \widetilde{z} & \text { if } t \leq T-1 \tag{10.10}\\ \lambda_{2} k_{t}-\frac{\left(\phi_{0} \lambda_{1}\right)^{-1}}{1-\frac{1}{\lambda_{1}}}\left(A_{0}+A_{1}+A_{2} \lambda_{2}\right) \widetilde{z} & \text { if } t \geq T-1\end{cases}
$$

11. Growth

- Now $Y_{t}=F\left(K_{t}, A_{t} n_{t}\right)$
- $A_{t+1}=\mu A_{t}$

D Deflate quantity variables: $y_{t}=\frac{Y_{t}}{A_{t} n_{t}}, k_{t}=\frac{K_{t}}{A_{t} n_{t}}, c_{t}=\frac{C_{t}}{A_{t} n_{t}}, g_{t}=\frac{G_{t}}{A_{t} n_{t}}$

- $y_{t}=f\left(k_{t}\right)=F\left(k_{t}, 1\right)$

11. Growth

- Assume again that labour is inelastically supplied and $n_{1}=1$
- Feasibility:

$$
\begin{equation*}
k_{t+1}=\mu^{-1}\left(f\left(k_{t}\right)+(1-\delta) k_{t}-g_{t}-c_{t}\right) \tag{11.4}
\end{equation*}
$$

- Euler:

$$
\begin{equation*}
u^{\prime}\left(A_{t} c_{t}\right)=\beta u^{\prime}\left(A_{t+1} c_{t+1}\right) \frac{\left(1+\tau_{c t}\right)}{\left(1+\tau_{c t+1}\right)}\left(\left(1-\tau_{k t+1}\right)\left(f^{\prime}\left(k_{t+1}\right)-\delta\right)+1\right) \tag{11.5}
\end{equation*}
$$

- With $u=\frac{c^{1-\gamma}}{1-\gamma}$,

$$
\left(\frac{c_{t+1}}{c_{t}}\right)^{\gamma}=\beta \mu^{-\gamma} \bar{R}_{t+1}
$$

\rightsquigarrow it is "as if" discount rate is now $\beta \mu^{-\gamma} \rightsquigarrow$ grwth increases discounting because marginal utility is decreasing (therefore future units of good are worth less with growth.

11. Growth

- At the steady state of the deflated economy (which corresponds to a balanced growth path of the non deflated economy):

$$
f^{\prime}(\bar{k})=\delta+\left(\frac{(1+\rho) \mu^{\gamma}-1}{1-\tau_{k}}\right)
$$

$\rightsquigarrow \bar{k}$ is smaller when $\mu>1$ (as compared to $\mu=1$)

11. Growth

- We can solve the deflated economy using the shooting algorithm
- Then we can recover the levels by multiplying by $A_{t}: K_{t}=A_{t} k_{t}=A_{0} \mu^{t} k(t)$, etc...
- Note that a permanent increase in μ

11. Growth

Foreseen permanent increase in μ

- New steady state level of k is lower
- Consumption jumps immediately because people are wealthier.
- Increase in the gross return \bar{R}

Figure 11.11.1: Response to foreseen once-and-for-all increase in rate of growth of productivity μ at $t=10$. From left to right, top to bottom: k, c, \bar{R}, η, μ, where now k, c are measured in units of effective unit of labor.

11. Growth

Surprise permanent increase in μ

- It looks very much like the transient part (after period 10) of the previous figure
- Increase in the gross return \bar{R}

12. Elastic Labour supply

$$
\max \mathcal{L}=\sum_{t=0}^{\infty} \beta^{t} U\left(c_{t}, 1-n_{t}\right)+\mu i b c
$$

- On top of the Euler equation, have an extra foc, which is the static consumption leisure decision.
- The two foc write

$$
\begin{aligned}
U_{1}\left(F\left(k_{t}, n_{t}\right)+(1-\delta) k_{t}-g_{t}-k_{t+1}, 1-n_{t}\right)= & \beta\left(\frac{1+\tau_{c t}}{1+\tau_{c t+1}}\right) \\
& \times U_{1}\left(F\left(k_{t+1}, n_{t+1}\right)+(1-\delta) k_{t+1}-g_{t}-k_{t+2}, 1-n_{t+1}\right) \\
& \times\left[\left(1-\tau_{k t+1}\right)\left(F_{k}\left(k_{t+1}, n_{t+1}\right)-\delta\right)+1\right] \\
\frac{U_{2}\left(F\left(k_{t}, n_{t}\right)+(1-\delta) k_{t}-g_{t}-k_{t+1}, 1-n_{t}\right)}{U_{1}\left(F\left(k_{t}, n_{t}\right)+(1-\delta) k_{t}-g_{t}-k_{t+1}, 1-n_{t}\right)}= & \left(\frac{1-\tau_{n t}}{1+\tau_{c t}}\right) F_{n}\left(k_{t}, n_{t}\right)
\end{aligned}
$$

12. Elastic Labour supply

Steady state

- We can again solve the model using the shooting algorithm or solving a linearized version.
- The steady state is now given by

$$
\begin{array}{ll}
\beta\left(1+\left(1-\tau_{k}\right)\left(F_{k}(\bar{k}, \bar{n})-\delta\right)\right) & =1 \\
\frac{U_{2}(\bar{c}, 1-\bar{n})}{U_{1}(\bar{c}, 1-\bar{n})} & =\left(\frac{1-\tau_{n}}{1+\tau_{c}}\right) F_{n}(\bar{k}, \bar{n}) \\
\bar{c}+\bar{g}+\delta \bar{k} & =F(\bar{k}, \bar{n}) \tag{12.7}
\end{array}
$$

- Given that $F_{k}(\bar{k}, \bar{n})=F_{k}\left(\frac{\bar{k}}{\bar{n}}, 1\right),(12.5)$ pins down $\widetilde{k}=\frac{\bar{k}}{\bar{n}}$
- (12.7) writes

$$
\delta+\frac{\rho}{1-\tau_{k}}=f(\widetilde{k})
$$

\rightsquigarrow only τ_{k} distorts \widetilde{k}.

- But τ_{c} and τ_{n} now distort the consumption/leisure decision.

12. Elastic Labour supply

Steady state

- Assume $U(c, 1-n)=\log c+B(1-n)$ (Hansen-Rogerson preferences)
- B is chosen such that $0<\bar{n}<1$
- \widetilde{k} can be computed from $f(\widetilde{k})=\delta+\frac{\rho}{1-\tau_{k}}$
- The rest of the steady state can be computed as follows:
\times (12.6) implies $\bar{c}=\frac{1}{B}\left(\frac{1-\tau_{n}}{1+\tau_{c}}\right)\left(f\left(\widetilde{k}-\widetilde{k}\left(f^{\prime}(\widetilde{k})\right)\right.\right.$
\times Then (12.7) implies $\bar{c}+\bar{g}+\delta \bar{k}=\bar{n} f(\widetilde{k})$ so that

$$
\begin{equation*}
\bar{n}(f(\widetilde{k})-\delta \widetilde{k})^{-1}(\bar{c}+\bar{g}) \tag{12.14}
\end{equation*}
$$

which pins down \bar{n}
\times Once \bar{n} and \widetilde{k} are known, $\bar{k}=\bar{n} \widetilde{k}$ can be obtained

- Let's assume same parameters values plus $B=3$.

12. Elastic Labour supply

Unforeseen permanent increase in g

Figure 11.12.1: Elastic labor supply: response to unforeseen increase in g at $t=0$. From left to right, top to bottom: k, c, n, \bar{R}, w, g. The dashed line is the original steady state.

- We have shown that \bar{k} / \bar{n} and \bar{c} not affected at the steady state
- (12.14) then implies that $\bar{n} \nearrow$ and therefore that $\bar{k} \nearrow$
- In the transition, $c \searrow$ and $n \nearrow$, which is bad for welfare.

12. Elastic Labour supply

Unforeseen permanent increase in τ_{n}

Figure 11.12.2: Elastic labor supply: response to unforeseen increase in τ_{n} at $t=0$. From left to right, top to bottom: $k, c, n, \bar{R}, w, \tau_{n}$. The dashed line is the original steady state.
12. Elastic Labour supply

Foreseen permanent increase in τ_{n}

Figure 11.12.3: Elastic labor supply: response to foreseen increase in τ_{n} at $t=10$. From left to right, top to bottom: $k, c, n, \bar{R}, w, \tau_{n}$. The dashed line is the original steady state.

- Long run effects are the same
- But in the short run $n, k \nearrow$ while c is flat
- It is worth working more (an saving) while labour is less taxed (before period 10)
- The impact of unexpected vs expected tax increase is in line with what is found in the data.
- Mertens and Ravn [2011], "Understanding the Effects of Anticipated and Unanticipated Tax Policy Shocks." Review of Economic Dynamics 14(1): 27-54. (Effect of tax cuts)

12. Elastic Labour supply

The Response to Tax Cuts in the US - Anticipated tax cuts are announced at date -6 and implemented at date 0 (Mertens and Ravn [2011]
(a) Unanticipated Tax Cut

(b) Anticipated Tax Cut

(a) Unanticipated Tax Cut

(b) Anticipated Tax Cut

