Some Inference Perils of Imposing a TAYLOR Rule

Paul Beaudry Andrew Preston Franck Portier UBC UCL UCL

7 January 2024 Session on Monetary Rules and the Taylor Principle AEA Annual Meeting, San Antonio (25mn)

Motivation

- Sticky prices models do not restrict much equilibrium allocations.
- What matters is the bundle {sticky prices , monetary policy}.

Motivation An introductory example

- Basic 3-equation New-Keynesian model

$$y_t = E_t[y_{t+1}] - 1 \times (i_t - E_t[\pi_{t+1}]) + d_t,$$
 (Euler Equation)
$$\pi_t = 0.99 \times E_t[\pi_{t+1}] + 0.1 \times y_t + \mu_t.$$
 (Phillips Curve)

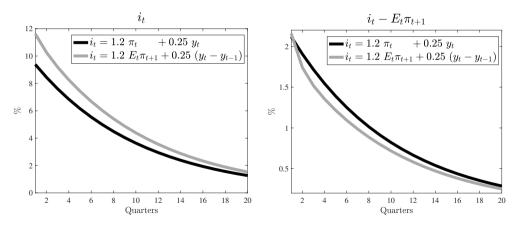
- Two "Taylor rules" :

$$\begin{array}{rcl} i_t &=& 1.2 \times \pi_t & + & 0.25 \times y_t, \\ i_t &=& 1.2 \times E_t \pi_{t+1} & + & 0.25 \times (y_t - y_{t-1}). \end{array}$$

– Shock $d_0 = 2$, $\mu_0 = 1$ (persistence .9 and .9).

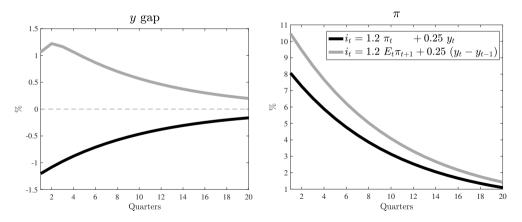
Motivation An introductory example

Response to a 2 s.d. demand shock and a 1 s.d. markup shock - Policy Instruments



Motivation An introductory example

Response to a 2 s.d. demand shock and a 1 s.d. markup shock - Output and inflation



Motivation

- From that example, we see that the specification of the monetary policy rule matters big time.
- A lot of microfoundation efforts in estimated DSGE ...
- but not much thoughts¹ on how to specify the monetary policy rule ...
- as if it should not matter...
- although it does matter.

 $^{^1\}mbox{It}$ is interesting to look back and see when, how and why $T\mbox{AYLOR}$ rules were introduced in estimated models.

What we do?

- Explore consequences of assuming (possibly wrongly) a TAYLOR rule when estimating NK models.
- Find it biaises estimated deep parameters:
 - \times determination bias in small models,
 - \times *misspectification bias* in larger models.
- Solution: use an agnostic (linear, minimal) *state* monetary policy rule (that maps the state of the economy into an equilibrium allocation).
- (modest) Contribution: show that the monetary policy rule specification does matter *in practice* when estimating DSGEs, and to propose an alternative.

Message

 It is a bad idea to estimate a NK DSGE assuming monetary authorities follow a TAYLOR rule.

Literature

- There is a literature on optimal monetary policy - not our concern here.

Important remark

- We follow the practice of restricting to determinate equilibria.
- In estimation, one identifying restriction is equilibrium determinacy.

Roadmap

- 1. Abstract Approach
- 2. A Simple Three-Equation Estimated Model
- 3. Extensions

Roadmap

- 1. Abstract Approach
- 2. A Simple Three-Equation Estimated Model
- 3. Extensions (Today SMETS & WOUTERS [2007])

Roadmap

- 1. Abstract Approach
- 2. A Simple Three-Equation Estimated Model
- 3. Extensions

1. Abstract Approach

- Goal: show the possibility of a determinacy bias and a misspecification bias when using a $\mathrm{Taylor}\xspace$ rule
- The distinctive property of the TAYLOR rule is that it is a *feedback rule*.
- Start with the determinacy bias.

1. Abstract Approach Model

$$\begin{split} y_t &= \alpha \mathcal{E}_t y_{t+1} + \beta i_t + s_t, \qquad 0 \leq \alpha < 1 \text{ and } \beta > 0, \\ s_t &= \rho s_{t-1} + \varepsilon_t, \qquad 0 \leq \rho < 1 \text{ and } V(\varepsilon) = 1. \end{split}$$

- *i* is a policy variable that helps controlling *y*:
 - × feedback rule (ϕ for ϕ eedback) ("TAYLOR rule"):

$$i_t = \phi y_t,$$

 \times (linear minimal) state rule (σ for σ tate):

$$i_t = \sigma s_t$$
.

1. Abstract Approach Solution with a feedback rule $i_t = \phi y_t$

$$- y_t = \alpha E_t y_{t+1} + \beta \underbrace{i_t}_{\phi y_t} + s_t.$$

- Solving forward:

$$y_t = rac{1}{1-eta\phi} \left(\sum_{j=0}^\infty \left(rac{lpha
ho}{1-eta\phi}
ight)^j
ight) s_t.$$

- Converges for any persistence parameter $0 \le
 ho < 1$ if $\left| rac{lpha}{1 eta \phi}
 ight| < 1.$
- Therefore, the restriction on policy to have determinacy ("TAYLOR principle") is :

$$\phi \notin \left[\frac{1-\alpha}{\beta}, \frac{1+\alpha}{\beta} \right[,$$

and solution is:

$$y_t = \frac{1}{1 - \beta \phi - \alpha \rho} \, s_t.$$

1. Abstract Approach Solution with a state rule $i_t = \sigma s_t$

$$- y_t = \alpha E_t y_{t+1} + \beta \underbrace{i_t}_{\sigma s_t} + s_t.$$

- Solving forward:

$$y_t = (1 + \beta \sigma) \left(\sum_{j=0}^{\infty} (\alpha \rho)^j \right) s_t.$$

- The sum converges for any policy choice σ ,
- and solution is

$$y_t = \frac{1+\beta\sigma}{1-\alpha\rho} \, s_t.$$

1. Abstract Approach Equivalence

Feedback ruleState rule $i_t = \phi \ y_t$ $i_t = \sigma \ s_t$

SolutionSolution
$$y_t = \frac{1}{1 - \beta \phi - \alpha \rho} s_t$$
 $y_t = \frac{1 + \beta \sigma}{1 - \alpha \rho} s_t$

1. Abstract Approach Equivalent state rule σ^E

DGP = Feedback rule	State rule
$i_t = \phi \ y_t$	$i_t = \sigma^E s_t$
Solution	Solution
$y_t = rac{1}{1 - eta \phi - lpha ho} \; s_t$	$y_t = rac{1+eta\sigma^{\mathcal{E}}}{1-lpha ho}\; s_t$

– Equivalent state rule: σ^{E} iif

$$\frac{1}{1 - \beta \phi - \alpha \rho} = \frac{1 + \beta \sigma^{E}}{1 - \alpha \rho} \Longleftrightarrow \sigma^{E} = \frac{\phi}{1 - \beta \phi - \alpha \rho}$$

- Any feedback rule allocation can be replicated by a state rule.

1. Abstract Approach Equivalent feedback rule ϕ^E

Feedback rule	DGP = State rule
$i_t = \phi^E y_t$	$i_t = \sigma \ s_t$
Solution	Solution
$y_t = rac{1}{1-eta \phi^{ar{ extsf{E}}} - lpha ho} \; oldsymbol{s}_t$	$y_t = rac{1+eta\sigma}{1-lpha ho} \; s_t$

- Equivalent feedback rule: ϕ^E must solve

$$\frac{1}{1-\beta\phi^{\mathsf{E}}-\alpha\rho} = \frac{1+\beta\sigma}{1-\alpha\rho} \Longleftrightarrow \phi^{\mathsf{E}} = \frac{\sigma(1-\alpha\rho)}{1+\beta\sigma}.$$

1. Abstract Approach Equivalent feedback rule ϕ^E

Feedback ruleDGP = State rule $i_t = \phi^E y_t$ $i_t = \sigma s_t$ SolutionSolution $y_t = \frac{1}{1 - \beta \phi^E - \alpha \rho} s_t$ $y_t = \frac{1 + \beta \sigma}{1 - \alpha \rho} s_t$

- Equivalent feedback rule: ϕ^E must solve

$$\frac{1}{1-\beta\phi^{\mathcal{E}}-\alpha\rho} = \frac{1+\beta\sigma}{1-\alpha\rho} \Longleftrightarrow \phi^{\mathcal{E}} = \frac{\sigma(1-\alpha\rho)}{1+\beta\sigma} \qquad \stackrel{?}{\notin} \quad \left]\frac{1-\alpha}{\beta}, \frac{1+\alpha}{\beta}\right[.$$

1. Abstract Approach Equivalent feedback rule ϕ^E

Feedback rule	DGP = State rule
$i_t = \phi^E y_t$	$i_t = \sigma \ s_t$
Solution $y_t = \frac{1}{1 - \beta \phi^E - \alpha \rho} s_t$	Solution $y_t = rac{1+eta\sigma}{1-lpha ho} s_t$

- Equivalent feedback rule: ϕ^E must solve

$$\frac{1}{1-\beta\phi^{\mathsf{E}}-\alpha\rho} = \frac{1+\beta\sigma}{1-\alpha\rho} \Longleftrightarrow \phi^{\mathsf{E}} = \frac{\sigma(1-\alpha\rho)}{1+\beta\sigma} \qquad \stackrel{?}{\notin} \quad \left]\frac{1-\alpha}{\beta}, \frac{1+\alpha}{\beta}\right[.$$

× If $\sigma > -\frac{1+\alpha}{2\alpha\beta}$, then ϕ^E will satisfy the determinacy condition. × But if $\sigma < -\frac{1+\alpha}{2\alpha\beta}$, there is no determinate feedback model that can reproduce the state rule allocations \rightsquigarrow *No equivalence.*

1. Abstract Approach Determination Bias

- Wrongly assuming a feedback rule can create a bias in estimation of deep parameters.
- This can be shown analytically in our abstract model.

1. Abstract Approach Determinacy Bias: Estimating α

- Here an extreme example for which the bias can be analytically computed.
- Only y is observed.
- All parameters are known (β , ρ , ϕ or σ^{E} , σ or ϕ^{E}) but α .

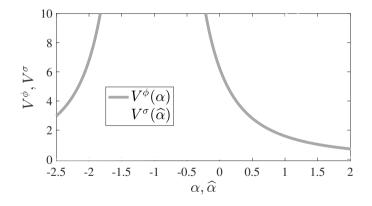
$$y_t = \alpha E_t y_{t+1} + \beta i_t + s_t.$$

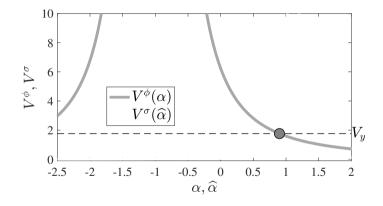
- α can be estimated (ML) by matching the observed variance of y: V_y .
- Assume true $\alpha = .9$.

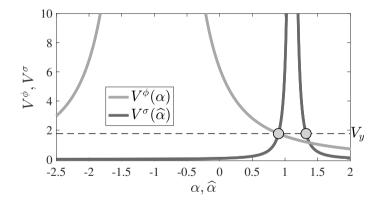
1. Abstract Approach Possible Bias when Estimating α

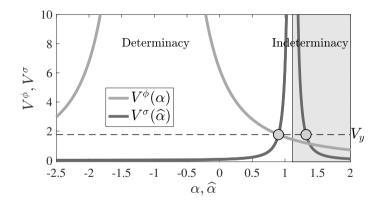
Assume the DGP is the feedback rule (ϕ) but the econometrician believes it is a _ state rule model.

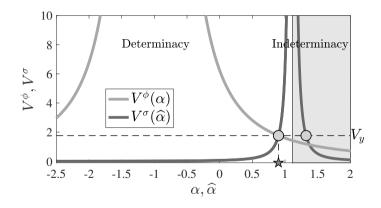
State rule $i_t = \sigma^E s_t$	Feedback rule $i_t = \phi \ y_t$
Solution $y_t = \frac{1+\beta\sigma^E}{1-\widehat{\alpha}\rho} s_t$	Solution $y_t = \frac{1}{1 - \beta \phi - \alpha \rho} s_t$
	$oldsymbol{V}^{\phi}(lpha) \ rac{1}{(1-eta\phi-lpha ho)^2} \; rac{1}{1- ho^2}$







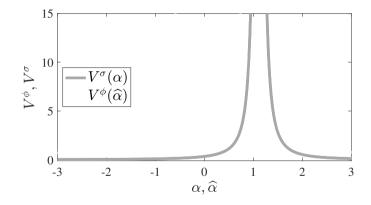


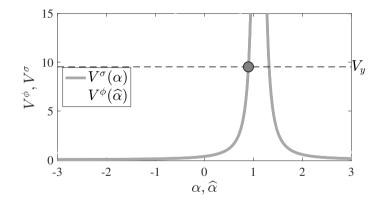


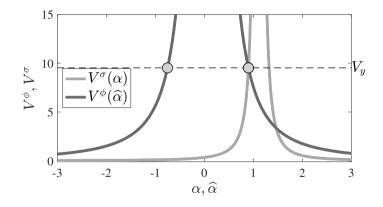
1. Abstract Approach Possible Bias when Estimating α

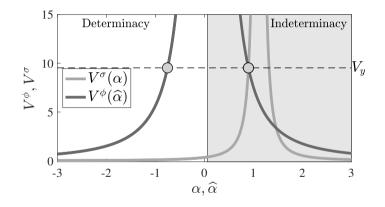
- Assume now that the DGP is the state rule (σ) but the econometrician believes it is a feedback rule model.
- If $\sigma \rightsquigarrow \phi^{\mathcal{E}}$ that is not in the determinacy zone: biased estimation of α .

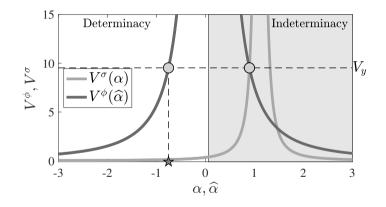
Feedback rule $i_t = \phi^E y_t$	State rule $i_t = \sigma \ s_t$
Solution $y_t = rac{1}{1 - eta \phi^{\mathcal{E}} - \widehat{lpha} ho} s_t$	Solution $y_t = rac{1+eta\sigma}{1-lpha ho} s_t$
$oldsymbol{V}^{\phi}(\widehat{lpha}) \ rac{1}{(1-eta\phi^{E}-\widehat{lpha} ho)^{2}} \ rac{1}{1- ho^{2}}$	$oldsymbol{V}^{\sigma}(lpha) \ \left(rac{1+eta\sigma}{1-lpha ho} ight)^2 rac{1}{1- ho^2}$











1. Abstract Approach Remarks

- As α is just identified, the fit of the model is the same, even if $\widehat{\alpha}$ is biased.
- This is not the standard *misspecification bias* (see next).
- Let's call it a *determinacy bias*.

1. Abstract Approach Misspecification bias

- Static model

$$y_t = \beta i_t + s_{1t} + \gamma s_{2t},$$

Rules:

Feedback ruleState rule
$$i_t = \phi y_t + \nu_t$$
 $i_t = \sigma_1 s_{1t} + \sigma_2 s_{2t} + \nu_t$

– Bias in estimating γ for β and shock variances known if feedback rule wrongly assumed.

1. Abstract Approach

- Are there evidence of determinacy and specification bias when estimating DSGE-like models?
- Yes

Roadmap

- 1. Abstract Approach
- 2. A Simple Three-Equation Estimated Model
- 3. Extensions

2. A Simple Three-Equation Estimated Model

$$y_{t} = \alpha_{y} E_{t}[y_{t+1}] - \alpha_{r} r_{t} + d_{t}, \qquad (\text{Euler Equation})$$

$$\pi_{t} = \beta E_{t}[\pi_{t+1}] + \kappa y_{t} + \mu_{t}, \qquad (\text{Phillips Curve})$$

$$r_{t} = \begin{cases} -E_{t}\pi_{t+1} + \phi_{y}y_{t} + \phi_{\pi}\pi_{t} + \nu_{t}, \\ \sigma_{d}d_{t} + \sigma_{\mu}\mu_{t} + \widetilde{\nu}_{t}. \end{cases} \qquad (\text{TAYLOR Rule}) \quad (\phi \text{eedback}) \\ (\text{Real rate Rule}) \quad (\sigma \text{tate}) \end{cases}$$

- Remark 1: $|\alpha_y| < 1 \rightsquigarrow$ always determinacy under RR (and α_y can be arbitrarily close to 1)
- Remark 2: Same deep parameters are estimated if monetary policy is

$$y_t = \sigma'_d d_t + \sigma'_\mu \mu_t + \widehat{\nu}_t$$
 (Another Monetary Policy State Rule)

2. A Simple Three-Equation Estimated Model Estimation

- US data, 1959Q1-2019Q4.
- Output gap from the CBO, log difference of the CPI for inflation, Federal Funds rate for *i*.
- The shadow Federal Funds rate from Wu and Xia (2016) is used from 2009 onwards - the period when the zero lower bound might be a binding constraint.

Bayesian estimation

2. A Simple Three-Equation Estimated Model Calibrated and estimated coefficients

$$\begin{aligned} y_t &= 0.999 \times E_t[y_{t+1}] - 1 \times r_t + d_t, & (\text{Euler Equation}) \\ \pi_t &= 0.99 \times E_t[\pi_{t+1}] + \kappa y_t + \mu_t, & (\text{Phillips Curve}) \\ r_t &= \begin{cases} -E_t \pi_{t+1} + \phi_y y_t + \phi_\pi \pi_t + \nu_t, & (\text{TAYLOR Rule}) \\ \sigma_d d_t + \sigma_\mu \mu_t + \widetilde{\nu}_t. & (\text{State Rule}) \\ d_t &= \rho_d d_{t-1} + \sigma_d \varepsilon_{dt} & (\text{Demand shock}) \\ \mu_t &= \rho_\mu d_{t-1} + \sigma_\mu \varepsilon_{\mu t} & (\text{Supply shock}) \\ \nu_t &= \rho_\nu d_{t-1} + \sigma_\nu \varepsilon_{\nu t} & (\text{Monetary shock}) \end{aligned}$$

2. A Simple Three-Equation Estimated Model Results

Estimated Slope of the Phillips Curve, TAYLOR rule versus State Rule

TAY	lor Rule	Sta	ate Rule
κ	0.68	κ	0.006
	(0.06)		(0.001)

- Here the State Rule is expressed as a Real rate Rule.

2. A Simple Three-Equation Estimated Model Determinacy bias

Estimated and Implied Policy Parameters

TAY	Lor Rule	Real	rate Rule
ϕ_{π}	1.77		
ϕ_{y}	-0.01		
2		σ_d	0.97
		σ_{μ}	-0.46

2. A Simple Three-Equation Estimated Model Determinacy bias

Estimated and Implied Policy Parameters

TAYI	Lor Rule	Real	rate Rule
ϕ_{π}	1.77	ϕ_{π}^{E}	-0.24
ϕ_{y}	-0.01	$\phi_{\mathbf{v}}^{\mathbf{E}}$	0.68
		σ_d	0.97
		σ_{μ}	-0.46

The equivalent ${\rm TAYLOR}$ rule does not satisfy ${\rm TAYLOR}$ principle \rightsquigarrow There is a determinacy bias.

Roadmap

- 1. Abstract Approach
- 2. A Simple Three-Equation Estimated Model
- 3. Extensions (Today SMETS & WOUTERS [2007])

3. Extensions SMETS & WOUTERS [2007]

- Large model with 7 shocks, 36 estimated coefficients, 19 state variables
- 7 observable series, Bayesian estimation
- Estimated TAYLOR Rule in S&W:

$$i_{t} = \rho i_{t-1} + (1-\rho) \left(\phi_{\pi} \pi_{t} + \phi_{y} (y_{t} - y_{t}^{f}) \right) + \phi_{\Delta y} \left((y_{t} - y_{t}^{f}) - (y_{t-1} - y_{t-1}^{f}) \right) + \varepsilon_{t}^{i}$$

- The Real rate Rule (The State Rule):

$$\begin{aligned} r_t - E_t \pi_{t+1} &= \sigma_a \varepsilon_t^a + \sigma_b \varepsilon_t^b + \sigma_g \varepsilon_t^g + \sigma_{is} \varepsilon_t^i + \sigma_{p^{inf}} \varepsilon_t^p + \sigma_{w^s} \varepsilon_t^w + \sigma_{\eta^w} \eta_{t-1}^w \\ &+ \sigma_{\eta^p} \eta_{t-1}^p + \sigma_{y^p} y_{t-1}^p + \sigma_y y_{t-1} + \sigma_r r_{t-1} + \sigma_{k^{p,s}} k_t^{p,s} + \sigma_{k^s} k_t^s \\ &+ \sigma_{c^p} c_{t-1}^p + \sigma_{i^p} i_{t-1}^p + \sigma_c c_{t-1} + \sigma_i i_{t-1} + \sigma_\pi \pi_{t-1} + \sigma_w w_{t-1} + \varepsilon_t^R \end{aligned}$$

– Is the Central Bank information set realistic? \rightsquigarrow If not, some σ_x will be zero.

3. Extensions SMETS & WOUTERS [2007]

- No sign of determinacy bias with the SW extended TAYLOR rule.

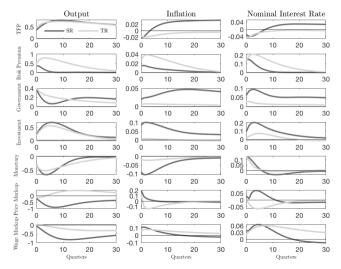
	S&W TAYLOR Rule	Implied TAYLOR Rule
ϕ_{π}	1.84	1.43
ϕ_{y}	0.11	0.00
ρ	0.87	0.84
$\phi_{\Delta y}$	0.25	0.17

3. Extensions Smets & Wouters [2007]

- But evidence of misspecification bias:
- Parameters posterior distributions are pretty different ~>> impulse responses and variance decomposition are pretty different.
- Reminder: the (state) real rate rule *encompasses* the TAYLOR rule.

3. Extensions

 $\rm SMETS~\&$ WOUTERS [2007]: TAYLOR Rule (TR) and State Rule (SR): misspecification bias



3. Extensions SMETS & WOUTERS [2007]: Misspecification bias

Inflation Unconditional Variance Decomposition (in %)

	State rule	Smets-Wouters
TFP		2
Risk Premium		6
Government Spending		1
Investment Technology		0
Monetary Policy		2
Price Markup		47
Wage Markup		41

3. Extensions SMETS & WOUTERS [2007]: Misspecification bias

Inflation Unconditional Variance Decomposition (in %)

		<u> </u>
	State rule	Smets-Wouters
TFP	16	2
Risk Premium	0	6
Government Spending	16	1
Investment Technology	21	0
Monetary Policy	13	2
Price Markup	14	47
Wage Markup	20	41

Conclusion

- Specification of the monetary policy rule matters big time
- Evidence of both determinacy and misspecification bias.
- We recommend to use a state monetary policy rules,
- At least check if results change a lot with a state rule.

